Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells 
eLife  2014;3:e01967.
Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competition between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis.
eLife digest
The surfaces of plants are covered in epithelial cells that come in many different shapes, suggesting that individual cells must have some control over their own shape. An unusually shaped epithelial cell is the pavement cell, which looks like a jigsaw puzzle piece and is found in the leaves of many flowering plants. Relatively little was known about the exact contribution of mechanical properties of the wall to this shape. Furthermore, although it was known that parts of pavement cells are rich in microtubules—tubes of protein that act as a scaffold inside the cell— the possibility that shape impacts the behavior of microtubules was not fully addressed.
Now, using a combination of computer modelling and experiments, Sampathkumar et al. reveal that the shape of the pavement cells relies in part on the response of the microtubules to stress. In an individual cell, microtubules align along the direction of the largest stress, with a protein severing those microtubules that are not aligned in this direction. As the stress inside a cell is determined in part by the cell’s shape, this sets up a feedback loop: the stress resulting from the cell shape aligns the microtubules that reinforce the cell wall, thus maintaining the shape of the cell.
An external stress applied to the epithelium can override this internal stress. Because all of the plant cells are under turgor pressure from the inside, pressure from the outside, like squeezing a balloon, changes the stress pattern, causing the realignment of the microtubules so as to resist the new stress. This shows that the microtubules respond to local stresses within a cell, and are continually responsive to stress changes.
PMCID: PMC3985187  PMID: 24740969
microtubule; biomechanics; computational modeling; cytoskeleton; cell wall; Arabidopsis
2.  Stress and Strain Provide Positional and Directional Cues in Development 
PLoS Computational Biology  2014;10(1):e1003410.
The morphogenesis of organs necessarily involves mechanical interactions and changes in mechanical properties of a tissue. A long standing question is how such changes are directed on a cellular scale while being coordinated at a tissular scale. Growing evidence suggests that mechanical cues are participating in the control of growth and morphogenesis during development. We introduce a mechanical model that represents the deposition of cellulose fibers in primary plant walls. In the model both the degree of material anisotropy and the anisotropy direction are regulated by stress anisotropy. We show that the finite element shell model and the simpler triangular biquadratic springs approach provide equally adequate descriptions of cell mechanics in tissue pressure simulations of the epidermis. In a growing organ, where circumferentially organized fibers act as a main controller of longitudinal growth, we show that the fiber direction can be correlated with both the maximal stress direction and the direction orthogonal to the maximal strain direction. However, when dynamic updates of the fiber direction are introduced, the mechanical stress provides a robust directional cue for the circumferential organization of the fibers, whereas the orthogonal to maximal strain model leads to an unstable situation where the fibers reorient longitudinally. Our investigation of the more complex shape and growth patterns in the shoot apical meristem where new organs are initiated shows that a stress based feedback on fiber directions is capable of reproducing the main features of in vivo cellulose fiber directions, deformations and material properties in different regions of the shoot. In particular, we show that this purely mechanical model can create radially distinct regions such that cells expand slowly and isotropically in the central zone while cells at the periphery expand more quickly and in the radial direction, which is a well established growth pattern in the meristem.
Author Summary
Development and morphogenesis of tissues are dependent on a coordination between cell differentiation, proliferation and growth. Plants, which lack cell migration, control directional growth of tissues by adjusting cellulose fiber directions so forming the organ shapes. It has recently been shown that mechanical cues can guide these fibers. We developed detailed mechanical models to investigate how fiber directions may be responding to mechanical cues and what consequences this may have for positional and directional growth patterns. We show that a model in which fibers align to maximal stress directions spontaneously generates a radial zonation in the shoot, recapitulating the slowly growing center and more rapidly growing peripheral region previously observed in the meristem. These radial patterns emerging from mechanics are in striking correspondence to the expression patterns of the genes important for stem cell maintenance, which attain similar radial domains. We also show that the stress model can robustly define anisotropically growing organs, which emphasizes the potential importance of stress in generating correct organ shapes in plants.
PMCID: PMC3886884  PMID: 24415926
3.  Plant stem cell maintenance involves direct transcriptional repression of differentiation program 
The plant stem cell regulator WUSCHEL is shown to repress differentiation-promoting transcription factors. This regulatory network is analyzed with a computational model of the three-dimensional shoot stem cell niche and a combination of genetic perturbation and live imaging.
We find that the transcription factor (TF) WUSCHEL (WUS) directly binds to the promoters and represses a group of genes including key TFs involved in differentiation thus keeping them repressed in the stem cells of the plant shoot, a mechanistic logic that is similar to animal stem cell regulation.We use a three-dimensional computational model of the plant shoot stem cell niche to show that the WUS-mediated repression of the differentiation program along with the previously reported activation of its own negative regulator leads to a robust stem cell homeostasis in a dynamic growth environment.Live imaging of target genes upon transient manipulation of WUS levels is combined with model perturbations to validate the proposed network and to connect it with a large body of previous experimental work.
In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high-resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS-mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.
PMCID: PMC3658276  PMID: 23549482
central zone; CLAVATA3; shoot apical meristem; stem cell niche; WUSCHEL
4.  Models of sequestration and receptor cross-talk for explaining multiple mutants in plant stem cell regulation 
Stem cells reside in a plant's shoot meristem throughout its life and are main regulators of above-ground plant development. The stem cell maintenance depends on a feedback network between the CLAVATA and WUSCHEL genes. The CLAVATA3 peptide binds to the CLAVATA1 receptor leading to WUSCHEL inhibition. WUSCHEL, on the other hand, activates CLAVATA3 expression. Recent experiments suggest a second pathway where CLAVATA3 inhibits WUSCHEL via the CORYNE receptor pathway. An interesting question, central for understanding the receptor signaling, is why the clavata1-11 null mutant has a weaker phenotype compared with the clavata1-1 non-null mutant. It has been suggested that this relies on interference from the mutated CLAVATA1 acting on the CORYNE pathway.
We present two models for the CLAVATA-WUSCHEL feedback network including two receptor pathways for WUSCHEL repression and differing only by the hypothesized mechanisms for the clavata1-1 non-null mutant. The first model is an implementation of the previously suggested interference mechanism. The other model assumes an unaltered binding between CLAVATA3 and the mutated CLAVATA1 but with a loss of propagated signal into the cell. We optimize the models using data from wild type and four single receptor mutant experiments and use data from two receptor double mutant experiments in a validation step. Both models are able to explain all seven phenotypes and in addition qualitatively predict CLAVATA3 perturbations. The two models for the clavata1-1 mutant differ in the direct mechanism of the mutant, but they also predict other differences in the dynamics of the stem cell regulating network. We show that the interference hypothesis leads to an abundance of receptors, while the loss-of-signal hypothesis leads to sequestration of CLAVATA3 and relies on degradation or internalization of the bound CLAVATA1 receptor.
Using computational modeling, we show that an interference hypothesis and a more parsimonious loss-of-signal hypothesis for a clavata1 non-null mutant both lead to behaviors predicting wild type and six receptor mutant experiments. Although the two models have identical implementations of the unperturbed feedback network for stem cell regulation, we can point out model-predicted differences that may be resolved in future experiments.
PMCID: PMC3023650  PMID: 21208399
5.  Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport 
PLoS Biology  2010;8(10):e1000516.
Imaging and computational modeling of the Arabidopsis shoot meristem epidermis suggests that biomechanical signals coordinately regulate auxin efflux carrier distribution and microtubule patterning to orchestrate the extent and directionality of growth.
Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis.
Author Summary
The proper development of plant organs such as leaves or flowers depends both on localized growth, which can be controlled by the plant hormone auxin, and directional growth, which is dependent on each cell's microtubule cytoskeleton. In this paper we show that at the shoot apex where organs initiate the orientation of the microtubule cytoskeleton is correlated with the orientation of the auxin transporter PIN1, suggesting coordination between growth patterning at the tissue level and directional growth at the cellular level. Recent work has indicated that mechanical signals play a role in orienting the plant microtubule network, and here we show that such signals can also orient PIN1. In addition, we demonstrate through mathematical modeling that an auxin transport system that is coordinated by mechanical signals akin to those we observed in vivo is sufficient to give rise to the patterns of organ outgrowth found in the plant Arabidopsis thaliana.
PMCID: PMC2957402  PMID: 20976043
6.  A Modeling Study on How Cell Division Affects Properties of Epithelial Tissues Under Isotropic Growth 
PLoS ONE  2010;5(7):e11750.
Cell proliferation affects both cellular geometry and topology in a growing tissue, and hence rules for cell division are key to understanding multicellular development. Epithelial cell layers have for long times been used to investigate how cell proliferation leads to tissue-scale properties, including organism-independent distributions of cell areas and number of neighbors. We use a cell-based two-dimensional tissue growth model including mechanics to investigate how different cell division rules result in different statistical properties of the cells at the tissue level. We focus on isotropic growth and division rules suggested for plant cells, and compare the models with data from the Arabidopsis shoot. We find that several division rules can lead to the correct distribution of number of neighbors, as seen in recent studies. In addition we find that when also geometrical properties are taken into account other constraints on the cell division rules result. We find that division rules acting in favor of equally sized and symmetrically shaped daughter cells can best describe the statistical tissue properties.
PMCID: PMC2912771  PMID: 20689588
7.  A Cell-Based Model for Quorum Sensing in Heterogeneous Bacterial Colonies 
PLoS Computational Biology  2010;6(6):e1000819.
Although bacteria are unicellular organisms, they have the ability to act in concert by synthesizing and detecting small diffusing autoinducer molecules. The phenomenon, known as quorum sensing, has mainly been proposed to serve as a means for cell-density measurement. Here, we use a cell-based model of growing bacterial microcolonies to investigate a quorum-sensing mechanism at a single cell level. We show that the model indeed predicts a density-dependent behavior, highly dependent on local cell-clustering and the geometry of the space where the colony is evolving. We analyze the molecular network with two positive feedback loops to find the multistability regions and show how the quorum-sensing mechanism depends on different model parameters. Specifically, we show that the switching capability of the network leads to more constraints on parameters in a natural environment where the bacteria themselves produce autoinducer than compared to situations where autoinducer is introduced externally. The cell-based model also allows us to investigate mixed populations, where non-producing cheater cells are shown to have a fitness advantage, but still cannot completely outcompete producer cells. Simulations, therefore, are able to predict the relative fitness of cheater cells from experiments and can also display and account for the paradoxical phenomenon seen in experiments; even though the cheater cells have a fitness advantage in each of the investigated groups, the overall effect is an increase in the fraction of producer cells. The cell-based type of model presented here together with high-resolution experiments will play an integral role in a more explicit and precise comparison of models and experiments, addressing quorum sensing at a cellular resolution.
Author Summary
Unicellular organisms have the ability to communicate with each other via signaling molecules, leading to correlated behaviors resembling that of higher organisms. This process, called quorum sensing, allows the cells to monitor the population size or density in a decentralized fashion and perform a common task when these parameters exceed predefined threshold values. The quorum sensing mechanism has been implicated in diverse functions such as producing bioluminescence, virulence factors, and initiating biofilm formation. Complex emergent behaviors, such as quorum sensing, can be hard to analyze and understand without the assistance of mathematical and computational models. Here, we present a cell-based model of proliferating bacterial microcolonies and investigate how population-level responses can emerge from the signaling and mechanical properties of individual cells. We study both signaling variations within homogeneous (homotypic) bacterial populations as well as signaling and competition in mixed heterotypic populations. We investigate in particular how population size, local cell density, and spatial confinement affect colony growth and predict strategies for facilitating quorum sensing. We also show that the interplay between “honest” quorum sensing signal producing bacteria and non-producing “cheaters” can lead to emergent feedback regulation via differentiated growth that provides only a transient benefit for cheating cells.
PMCID: PMC2887461  PMID: 20585545
8.  Modeling Auxin-regulated Development 
The phytohormone auxin plays an essential role in many aspects of plant growth and development. Its patterning, intercellular transport, and means of signaling have been extensively studied both in experiments and computational models. Here, we present a review of models of auxin-regulated development in different plant tissues. This includes models of organ initiation in the shoot apical meristem, development of vascular strands in leafs and stems, and auxin-related functioning in roots. The examples show how mathematical modeling can help to examine expected and unexpected behavior of the system, challenge our knowledge and hypotheses, obtain quantitative results, or suggest new experiments and ways to approach a problem.
Computer simulations of plant responses to auxin explain previously perplexing aspects of the transport, regulation, and metabolism of this phytohormone.
PMCID: PMC2828283  PMID: 20182620
9.  Self-Organization in High-Density Bacterial Colonies: Efficient Crowd Control 
PLoS Biology  2007;5(11):e302.
Colonies of bacterial cells can display complex collective dynamics, frequently culminating in the formation of biofilms and other ordered super-structures. Recent studies suggest that to cope with local environmental challenges, bacterial cells can actively seek out small chambers or cavities and assemble there, engaging in quorum sensing behavior. By using a novel microfluidic device, we showed that within chambers of distinct shapes and sizes allowing continuous cell escape, bacterial colonies can gradually self-organize. The directions of orientation of cells, their growth, and collective motion are mutually correlated and dictated by the chamber walls and locations of chamber exits. The ultimate highly organized steady state is conducive to a more-organized escape of cells from the chambers and increased access of nutrients into and evacuation of waste out of the colonies. Using a computational model, we suggest that the lengths of the cells might be optimized to maximize self-organization while minimizing the potential for stampede-like exit blockage. The self-organization described here may be crucial for the early stage of the organization of high-density bacterial colonies populating small, physically confined growth niches. It suggests that this phenomenon can play a critical role in bacterial biofilm initiation and development of other complex multicellular bacterial super-structures, including those implicated in infectious diseases.
Author Summary
Bacterial cells form colonies with complex organization (aka biofilms), particularly in response to hostile environmental conditions. Recent studies have shown that biofilm development occurs when bacterial cells seek out small cavities and populate them at high densities. However, bacteria in cavities may suffer from poor nutrient supply or waste removal, or disorganized expansion leading to blockage of cell escape. In this study, we observed Escherichia coli in a microfluidic device that allows direct observation of the growth and development of cell colonies in microchambers of different shapes and sizes through multiple generations. Combining this experimentation with computational analysis of colony growth and expansion, we characterize a process of colony self-organization that results in a high degree of correlation between the directions of cell orientation and growth of collective cell movement. We also find that this self-organization can significantly facilitate efficient escape of cells from the confines of cavities where they reside, while improving the access of nutrients into the colony interior. Finally, we suggest that the aspect ratio of the shape of E. coli and other similar bacteria might be generally subject to a constraint related to colony self-organization.
In nature, bacteria often found themselves in high-density colonies. The combination of a novel microfluidic device and computational analysis reveals an unexpected self-organization behavior of tightly packed bacterial cells.
PMCID: PMC2043048  PMID: 18044986
10.  Controversial significance of early S100B levels after cardiac surgery 
BMC Neurology  2004;4:24.
The brain-derived protein S100B has been shown to be a useful marker of brain injury of different etiologies. Cognitive dysfunction after cardiac surgery using cardiopulmonary bypass has been reported to occur in up to 70% of patients. In this study we tried to evaluate S100B as a marker for cognitive dysfunction after coronary bypass surgery with cardiopulmonary bypass in a model where the inflow of S100B from shed mediastinal blood was corrected for.
56 patients scheduled for coronary artery bypass grafting underwent prospective neuropsychological testing. The test scores were standardized and an impairment index was constructed. S100B was sampled at the end of surgery, hourly for the first 6 hours, and then 8, 10, 15, 24 and 48 hours after surgery. None of the patients received autotransfusion.
In simple linear analysis, no significant relation was found between S100B levels and neuropsychological outcome. In a backwards stepwise regression analysis the three variables, S100B levels at the end of cardiopulmonary bypass, S100B levels 1 hour later and the age of the patients were found to explain part of the neuropsychological deterioration (r = 0.49, p < 0.005).
In this study we found that S100B levels 1 hour after surgery seem to be the most informative. Our attempt to control the increased levels of S100B caused by contamination from the surgical field did not yield different results. We conclude that the clinical value of S100B as a predictive measurement of postoperative cognitive dysfunction after cardiac surgery is limited.
PMCID: PMC544890  PMID: 15601479

Results 1-10 (10)