Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("janis, jannet")
1.  Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals 
PLoS ONE  2014;9(12):e114490.
In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.
PMCID: PMC4256445  PMID: 25473947
2.  A Novel Chimeric Avidin with Increased Thermal Stability Using DNA Shuffling 
PLoS ONE  2014;9(3):e92058.
Avidins are a family of proteins widely employed in biotechnology. We have previously shown that functional chimeric mutant proteins can be created from avidin and avidin-related protein 2 using a methodology combining random mutagenesis by recombination and selection by a tailored biopanning protocol (phage display). Here, we report the crystal structure of one of the previously selected and characterized chimeric avidin forms, A/A2-1. The structure was solved at 1.8 Å resolution and revealed that the protein fold was not affected by the shuffled sequences. The structure also supports the previously observed physicochemical properties of the mutant. Furthermore, we improved the selection and screening methodology to select for chimeric avidins with slower dissociation rate from biotin than were selected earlier. This resulted in the chimeric mutant A/A2-B, which showed increased thermal stability as compared to A/A2-1 and the parental proteins. The increased stability was especially evident at conditions of extreme pH as characterized using differential scanning calorimetry. In addition, amino acid sequence and structural comparison of the chimeric mutants and the parental proteins led to the rational design of A/A2-B I109K. This mutation further decreased the dissociation rate from biotin and yielded an increase in the thermal stability.
PMCID: PMC3954883  PMID: 24632863
3.  Zebavidin - An Avidin-Like Protein from Zebrafish 
PLoS ONE  2013;8(10):e77207.
The avidin protein family members are well known for their high affinity towards D-biotin and high structural stability. These properties make avidins valuable tools for a wide range of biotechnology applications. We have identified a new member of the avidin family in the zebrafish (Danio rerio) genome, hereafter called zebavidin. The protein is highly expressed in the gonads of both male and female zebrafish and in the gills of male fish, but our data suggest that zebavidin is not crucial for the developing embryo. Biophysical and structural characterisation of zebavidin revealed distinct properties not found in any previously characterised avidins. Gel filtration chromatography and native mass spectrometry suggest that the protein forms dimers in the absence of biotin at low ionic strength, but assembles into tetramers upon binding biotin. Ligand binding was analysed using radioactive and fluorescently labelled biotin and isothermal titration calorimetry. Moreover, the crystal structure of zebavidin in complex with biotin was solved at 2.4 Å resolution and unveiled unique ligand binding and subunit interface architectures; the atomic-level details support our physicochemical observations.
PMCID: PMC3811995  PMID: 24204770
4.  Impact of protein binding on the analytical detectability and anticancer activity of thymoquinone 
Journal of Chemical Biology  2011;4(3):97-107.
Thymoquinone (TQ), an active component of Nigella sativa L., is known to have anti-cancer and anti-inflammatory effects; however, no studies on its analytical detection in serum and its protein binding have been published. Using high performance liquid chromatography analysis, we show that the average recovery of TQ from serum is 2.5% at 10 μg/ml of TQ and 72% at 100 μg/ml. The low recovery of TQ from serum is due to its extensive binding to plasma proteins, as more than 99% of TQ was bound within 30 min of incubation. The binding of TQ to the major plasma proteins, bovine serum albumin (BSA) and alpha −1 acid glycoprotein (AGP), was studied and found to be 94.5 ± 1.7% for BSA and 99.1 ± 0.1% for AGP. Mass spectrometric analysis revealed that TQ was bound covalently to BSA, specifically on Cyst-34. Using WST-1 proliferation assay, we showed that BSA plays a protective role against TQ-induced cell death; pre-incubation with BSA prevented TQ from exerting its anti-proliferative effects against DLD-1 and HCT-116 human colon cancer cells. On the other hand, binding of TQ to AGP did not alter its anti-proliferative activity against both cell lines. When TQ was pre-incubated with AGP prior to the addition of BSA, the activity of TQ against DLD-1 was maintained, suggesting that AGP prevented the binding of TQ to BSA. This is the first time the covalent binding and inhibitory effect of BSA on TQ is documented. These data offer new grounds for TQ future pharmacokinetic analysis in vivo.
Electronic supplementary material
The online version of this article (doi:10.1007/s12154-010-0052-4) contains supplementary material, which is available to authorized users.
PMCID: PMC3124627  PMID: 22229047
Thymoquinone; Mass spectrometry; Serum; Protein binding; Anticancer activity
5.  Characterization of Non-Specific Cytotoxic Cell Receptor Protein 1: A New Member of the Lectin-Type Subfamily of F-Box Proteins 
PLoS ONE  2011;6(11):e27152.
Our previous microarray study showed that the non-specific cytotoxic cell receptor protein 1 (Nccrp1) transcript is significantly upregulated in the gastric mucosa of carbonic anhydrase IX (CA IX)-deficient (Car9−/−) mice. In this paper, we aimed to characterize human NCCRP1 and to elucidate its relationship to CA IX. Recombinant NCCRP1 protein was expressed in Escherichia coli, and a novel polyclonal antiserum was raised against the purified full-length protein. Immunocytochemistry showed that NCCRP1 is expressed intracellularly, even though it has previously been described as a transmembrane protein. Using bioinformatic analyses, we identified orthologs of NCCRP1 in 35 vertebrate genomes, and up to five paralogs per genome. These paralogs are FBXO genes whose protein products are components of the E3 ubiquitin ligase complexes. NCCRP1 proteins have no signal peptides or transmembrane domains. NCCRP1 has mainly been studied in fish and was thought to be responsible for the cytolytic function of nonspecific cytotoxic cells (NCCs). Our analyses showed that in humans, NCCRP1 mRNA is expressed in tissues containing squamous epithelium, whereas it shows a more ubiquitous tissue expression pattern in mice. Neither human nor mouse NCCRP1 expression is specific to immune tissues. Silencing CA9 using siRNAs did not affect NCCRP1 levels, indicating that its expression is not directly regulated by CA9. Interestingly, silencing NCCRP1 caused a statistically significant decrease in the growth of HeLa cells. These studies provide ample evidence that the current name, “non-specific cytotoxic cell receptor protein 1,” is not appropriate. We therefore propose that the gene name be changed to FBXO50.
PMCID: PMC3210139  PMID: 22087255
6.  Preliminary X-ray analysis of twinned crystals of sarcosine dimethylglycine methyltransferase from Halorhodospira halochoris  
The crystallization and preliminary X-ray diffraction analysis of sarcosine dimethylglycine methyltransferase from H. halochoris is reported.
Sarcosine dimethylglycine methyltransferase (EC is an enzyme from the extremely halophilic anaerobic bacterium Halorhodospira halochoris. This enzyme catalyzes the twofold methylation of sarcosine to betaine, with S-­adenosylmethionine (AdoMet) as the methyl-group donor. This study presents the crystallization and preliminary X-ray analysis of recombinant sarcosine dimethylglycine methyltransferase produced in Escherichia coli. Mass spectroscopy was used to determine the purity and homogeneity of the enzyme material. Two different crystal forms, which initially appeared to be hexagonal and tetragonal, were obtained. However, on analyzing the diffraction data it was discovered that both crystal forms were pseudo-merohedrally twinned. The true crystal systems were monoclinic and orthorhombic. The monoclinic crystal diffracted to a maximum of 2.15 Å resolution and the orthorhombic crystal diffracted to 1.8 Å resolution.
PMCID: PMC2720339  PMID: 19652345
sarcosine dimethylglycine methyltransferase; Halorhodospira halochoris; twinning
7.  Bifunctional Avidin with Covalently Modifiable Ligand Binding Site 
PLoS ONE  2011;6(1):e16576.
The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (strept)avidin to improve the existing applications. Even so, (strept)avidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.
PMCID: PMC3029397  PMID: 21305032
8.  Effect of Glycosylation and Additional Domains on the Thermostability of a Family 10 Xylanase Produced by Thermopolyspora flexuosa▿ †  
The effects of different structural features on the thermostability of Thermopolyspora flexuosa xylanase XYN10A were investigated. A C-terminal carbohydrate binding module had only a slight effect, whereas a polyhistidine tag increased the thermostability of XYN10A xylanase. In contrast, glycosylation at Asn26, located in an exposed loop, decreased the thermostability of the xylanase. The presence of a substrate increased stability mainly at low pH.
PMCID: PMC2798631  PMID: 19854928
9.  Transient Dimers of Allergens 
PLoS ONE  2010;5(2):e9037.
Allergen-mediated cross-linking of IgE antibodies bound to the FcεRI receptors on the mast cell surface is the key feature of the type I allergy. If an allergen is a homodimer, its allergenicity is enhanced because it would only need one type of antibody, instead of two, for cross-linking.
Methodology/Principal Findings
An analysis of 55 crystal structures of allergens showed that 80% of them exist in symmetric dimers or oligomers in crystals. The majority are transient dimers that are formed at high protein concentrations that are reached in cells by colocalization. Native mass spectrometric analysis showed that native allergens do indeed form transient dimers in solution, while hypoallergenic variants of them exist almost solely in the monomeric form. We created a monomeric Bos d 5 allergen and show that it has a reduced capability to induce histamine release.
The results suggest that dimerization would be a very common and essential feature for allergens. Thus, the preparation of purely monomeric variants of allergens could open up novel possibilities for specific immunotherapy.
PMCID: PMC2816702  PMID: 20140203
10.  Characterization and crystallization of a recombinant IgE Fab fragment in complex with the bovine β-lactoglobulin allergen 
The high-resolution mass-spectrometric characterization, crystallization and X-ray diffraction studies of a recombinant IgE Fab fragment in complex with bovine β-lactoglobulin are reported.
A D1 Fab fragment containing the allergen-binding variable domains of the IgE antibody was characterized by ESI FT–ICR mass spectrometry and crystallized with bovine β-lactoglobulin (BLG) using the hanging-drop vapour-diffusion method at 293 K. X-ray data suitable for structure determination were collected to 2.8 Å resolution using synchrotron radiation. The crystal belonged to the orthorhombic space group P212121, with unit-cell parameters a = 67.0, b = 100.6, c = 168.1 Å. The three-dimensional structure of the D1 Fab fragment–BLG complex will provide the first insight into IgE antibody–allergen interactions at the molecular level.
PMCID: PMC2373997  PMID: 18097096
antibodies; IgE; food allergens; mass spectrometry
11.  DNA-Binding and -Bending Activities of SAP30L and SAP30 Are Mediated by a Zinc-Dependent Module and Monophosphoinositides ▿ †  
Molecular and Cellular Biology  2008;29(2):342-356.
Deacetylation of histones is carried out by a corepressor complex in which Sin3A is an essential scaffold protein. Two proteins in this complex, the Sin3A-associated proteins SAP30L and SAP30, have previously been suggested to function as linker molecules between various corepressors. In this report, we demonstrate new functions for human SAP30L and SAP30 by showing that they can associate directly with core histones as well as naked DNA. A zinc-coordinating structure is necessary for DNA binding, one consequence of which is bending of the DNA. We provide evidence that a sequence motif previously shown to be a nuclear localization signal is also a phosphatidylinositol (PI)-binding element and that binding of specific nuclear monophosphoinositides regulates DNA binding and chromatin association of SAP30L. PI binding also decreases the repression activity of SAP30L and affects its translocation from the nucleus to the cytoplasm. Our results suggest that SAP30L and SAP30 play active roles in recruitment of deacetylating enzymes to nucleosomes, and mediate key protein-protein and protein-DNA interactions involved in chromatin remodeling and transcription.
PMCID: PMC2612513  PMID: 19015240
12.  Modification of carbonic anhydrase II with acetaldehyde, the first metabolite of ethanol, leads to decreased enzyme activity 
BMC Biochemistry  2008;9:32.
Acetaldehyde, the first metabolite of ethanol, can generate covalent modifications of proteins and cellular constituents. However, functional consequences of such modification remain poorly defined. In the present study, we examined acetaldehyde reaction with human carbonic anhydrase (CA) isozyme II, which has several features that make it a suitable target protein: It is widely expressed, its enzymatic activity can be monitored, its structural and catalytic properties are known, and it contains 24 lysine residues, which are accessible sites for aldehyde reaction.
Acetaldehyde treatment in the absence and presence of a reducing agent (NaBH3(CN)) caused shifts in the pI values of CA II. SDS-PAGE indicated a shift toward a slightly higher molecular mass. High-resolution mass spectra of CA II, measured with and without NaBH3(CN), indicated the presence of an unmodified protein, as expected. Mass spectra of CA II treated with acetaldehyde revealed a modified protein form (+26 Da), consistent with a "Schiff base" formation between acetaldehyde and one of the primary NH2 groups (e.g., in lysine side chain) in the protein structure. This reaction was highly specific, given the relative abundance of over 90% of the modified protein. In reducing conditions, each CA II molecule had reacted with 9–19 (14 on average) acetaldehyde molecules (+28 Da), consistent with further reduction of the "Schiff bases" to substituted amines (N-ethyllysine residues). The acetaldehyde-modified protein showed decreased CA enzymatic activity.
The acetaldehyde-derived modifications in CA II molecule may have physiological consequences in alcoholic patients.
PMCID: PMC2605449  PMID: 19036170

Results 1-12 (12)