Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Haploinsufficiency of CSF-1R and clinicopathologic characterization in patients with HDLS 
Neurology  2014;82(2):139-148.
To clarify the genetic, clinicopathologic, and neuroimaging characteristics of patients with hereditary diffuse leukoencephalopathy with spheroids (HDLS) with the colony stimulating factor 1 receptor (CSF-1R) mutation.
We performed molecular genetic analysis of CSF-1R in patients with HDLS. Detailed clinical and neuroimaging findings were retrospectively investigated. Five patients were examined neuropathologically.
We found 6 different CSF-1R mutations in 7 index patients from unrelated Japanese families. The CSF-1R mutations included 3 novel mutations and 1 known missense mutation at evolutionarily conserved amino acids, and 1 novel splice-site mutation. We identified a novel frameshift mutation. Reverse transcription PCR analysis revealed that the frameshift mutation causes nonsense-mediated mRNA decay by generating a premature stop codon, suggesting that haploinsufficiency of CSF-1R is sufficient to cause HDLS. Western blot analysis revealed that the expression level of CSF-1R in the brain from the patients was lower than from control subjects. The characteristic MRI findings were the involvement of the white matter and thinning of the corpus callosum with signal alteration, and sequential analysis revealed that the white matter lesions and cerebral atrophy relentlessly progressed with disease duration. Spotty calcifications in the white matter were frequently observed by CT. Neuropathologic analysis revealed that microglia in the brains of the patients demonstrated distinct morphology and distribution.
These findings suggest that patients with HDLS, irrespective of mutation type in CSF-1R, show characteristic clinical and neuroimaging features, and that perturbation of CSF-1R signaling by haploinsufficiency may play a role in microglial dysfunction leading to the pathogenesis of HDLS.
PMCID: PMC3937843  PMID: 24336230
2.  Induction of Thymic Stromal Lymphopoietin Production by Xylene and Exacerbation of Picryl Chloride-Induced Allergic Inflammation in Mice 
Some chemical compounds in the environment worsen allergic inflammation. In this study, we examined whether organic solvents induce the production of thymic stromal lymphopoietin (TSLP) which elicits Th2-type immune responses.
Organic solvents were painted on the earlobes of BALB/c mice. The expression of TSLP in the ear was determined by ELISA.
Xylene and toluene, but not chloroform or ethyl acetate, induced the expression of mRNA for TSLP in the earlobe tissue. Among the aromatic compounds, xylene, especially m-xylene, and trimethylbenzene caused apparent TSLP production. The level of TSLP in the xylene-treated earlobes reached a maximum at 24 h, and TSLP was expressed in epithelial tissues. Production of TSLP was unaffected in mast cell-deficient W/Wv mice but apparently diminished in TNF-╬▒ knockout mice and IL-4 receptor knockout mice. Repeated painting of xylene for 7 days induced an increase in the weight of cervical lymph nodes and expression of OX40 ligand, both of which were inhibited in TSLP receptor knockout mice. Xylene promoted the picryl chloride-induced thickening of the ear and IL-4 production, which were reversed in TSLP receptor knockout mice.
Xylene induced TSLP production, resulting in an exacerbation of allergic inflammation. Thus, xylene might be a good tool for examining the roles of TSLP in eliciting allergy in experimental animals.
PMCID: PMC3221269  PMID: 21986191
Allergic inflammation; Thymic stromal lymphopoietin; Xylene
3.  Adaptive Changes in Membrane Lipids of Barophilic Bacteria in Response to Changes in Growth Pressure 
The lipid compositions of barophilic bacterial strains which contained docosahexaenoic acid (DHA [22:6n-3]) were examined, and the adaptive changes of these compositions were analyzed in response to growth pressure. In the facultatively barophilic strain 16C1, phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) were major components which had the same fatty acid chains. However, in PE, monounsaturated fatty acids such as hexadecenoic acid were major components, and DHA accounted for only 3.7% of the total fatty acids, while in PG, DHA accounted for 29.6% of the total fatty acids. In response to an increase in growth pressure in strain 16C1, the amounts of saturated fatty acids in PE were reduced, and these decreases were mainly balanced by an increase in unsaturated fatty acids, including DHA. In PG, the decrease in saturated fatty acids was mainly balanced by an increase in DHA. Similar adaptive changes in fatty acid composition were observed in response to growth pressure in obligately barophilic strain 2D2. Furthermore, these adaptive changes in response were also observed in response to low temperature in strain 16C1. These results confirm that the general shift from saturated to unsaturated fatty acids including DHA is one of the adaptive changes in response to increases in pressure and suggest that DHA may play a role in maintaining the proper fluidity of membrane lipids under high pressure.
PMCID: PMC106069  PMID: 16349499

Results 1-3 (3)