PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (34)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Assembly of the Cardiac Intercalated Disk during Pre- and Postnatal Development of the Human Heart 
PLoS ONE  2014;9(4):e94722.
Background
In cardiac muscle, the intercalated disk (ID) at the longitudinal cell-edges of cardiomyocytes provides as a macromolecular infrastructure that integrates mechanical and electrical coupling within the heart. Pathophysiological disturbance in composition of this complex is well known to trigger cardiac arrhythmias and pump failure. The mechanisms underlying assembly of this important cellular domain in human heart is currently unknown.
Methods
We collected 18 specimens from individuals that died from non-cardiovascular causes. Age of the specimens ranged from a gestational age of 15 weeks through 11 years postnatal. Immunohistochemical labeling was performed against proteins comprising desmosomes, adherens junctions, the cardiac sodium channel and gap junctions to visualize spatiotemporal alterations in subcellular location of the proteins.
Results
Changes in spatiotemporal localization of the adherens junction proteins (N-cadherin and ZO-1) and desmosomal proteins (plakoglobin, desmoplakin and plakophilin-2) were identical in all subsequent ages studied. After an initial period of diffuse and lateral labelling, all proteins were fully localized in the ID at approximately 1 year after birth. Nav1.5 that composes the cardiac sodium channel and the gap junction protein Cx43 follow a similar pattern but their arrival in the ID is detected at (much) later stages (two years for Nav1.5 and seven years for Cx43, respectively).
Conclusion
Our data on developmental maturation of the ID in human heart indicate that generation of the mechanical junctions at the ID precedes that of the electrical junctions with a significant difference in time. In addition arrival of the electrical junctions (Nav1.5 and Cx43) is not uniform since sodium channels localize much earlier than gap junction channels.
doi:10.1371/journal.pone.0094722
PMCID: PMC3986238  PMID: 24733085
2.  Modeling CaMKII in cardiac physiology: from molecule to tissue 
Post-translational modification of membrane proteins (e.g., ion channels, receptors) by protein kinases is an essential mechanism for control of excitable cell function. Importantly, loss of temporal and/or spatial control of ion channel post-translational modification is common in congenital and acquired forms of cardiac disease and arrhythmia. The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates a number of diverse cellular functions in heart, including excitation-contraction coupling, gene transcription, and apoptosis. Dysregulation of CaMKII signaling has been implicated in human and animal models of disease. Understanding of CaMKII function has been advanced by mathematical modeling approaches well-suited to the study of complex biological systems. Early kinetic models of CaMKII function in the brain characterized this holoenzyme as a bistable molecular switch capable of storing information over a long period of time. Models of CaMKII activity have been incorporated into models of the cell and tissue (particularly in the heart) to predict the role of CaMKII in regulating organ function. Disease models that incorporate CaMKII overexpression clearly demonstrate a link between its excessive activity and arrhythmias associated with congenital and acquired heart disease. This review aims at discussing systems biology approaches that have been applied to analyze CaMKII signaling from the single molecule to intact cardiac tissue. In particular, efforts to use computational biology to provide new insight into cardiac disease mechanisms are emphasized.
doi:10.3389/fphar.2014.00009
PMCID: PMC3912431  PMID: 24550832
calmodulin kinase II; mathematical modeling; calcium; arrhythmias; heart failure
3.  Remodeling of the cardiac sodium channel, Connexin43 and Plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy 
Background
Arrhythmogenic cardiomyopathy (AC) is tightly associated with desmosomal mutations in the majority of patients. Arrhythmogenesis in AC patients is likely related to remodeling of cardiac gap junctions and increased levels of fibrosis. Recently, using experimental models, we also identified sodium channel dysfunction secondary to desmosomal dysfunction. The aim of the present study was to assess the immunoreactive signal levels of the sodium channel protein NaV1.5, as well as Connexin43 and Plakoglobin, in myocardial specimens obtained from AC patients.
Methods
Left and right ventricular free wall (LVFW/RVFW) post-mortem material was obtained from 5 AC patients and 5 age and sex-matched controls. RV septal biopsies (RVSB) were taken from another 15 AC patients. All patients fulfilled the 2010 revised Task Force Criteria for AC diagnosis. Immunohistochemical analyses were performed using antibodies against Connexin43 (Cx43), Plakoglobin, NaV1.5, Plakophilin-2 and N-Cadherin.
Results
N-Cadherin and Desmoplakin immunoreactive signals and distribution were normal in AC patients compared to control. Plakophilin-2 signals were unaffected unless a PKP2 mutation predicting haploinsufficiency was present. Distribution was unchanged compared to control. Immunoreactive signal levels of PKG, Cx43 and NaV1.5 were disturbed in 74%, 70% and 65% of the patients, respectively.
Conclusions
Reduced immunoreactive signal of PKG, Cx43 and NaV1.5 at the intercalated disks can be observed in a large majority of the patients. Decreased levels of Nav1.5 might contribute to arrhythmia vulnerability and, in the future, potentially could serve as a new clinically relevant tool for risk assessment strategies.
doi:10.1016/j.hrthm.2012.11.018
PMCID: PMC3608196  PMID: 23178689
4.  CaMKII-Based Regulation of Voltage-Gated Na+ Channel in Cardiac Disease 
Circulation  2012;126(17):10.1161/CIRCULATIONAHA.112.105320.
Background
Human gene variants affecting ion channel biophysical activity and/or membrane localization are linked with potentially fatal cardiac arrhythmias. However, the mechanism for many human arrhythmia variants remains undefined despite over a decade of investigation. Post-translational modulation of membrane proteins is essential for normal cardiac function. Importantly, aberrant myocyte signaling has been linked to defects in cardiac ion channel post-translational modifications and disease. We recently identified a novel pathway for post-translational regulation of the primary cardiac voltage-gated Na+ channel (Nav1.5) by CaMKII. However, a role for this pathway in cardiac disease has not been evaluated.
Methods and Results
We evaluated the role of CaMKII-dependent phosphorylation in human genetic and acquired disease. We report an unexpected link between a short motif in the Nav1.5 DI-DII loop, recently shown to be critical for CaMKII-dependent phosphorylation, and Nav1.5 function in monogenic arrhythmia and common heart disease. Experiments in heterologous cells and primary ventricular cardiomyocytes demonstrate that human arrhythmia susceptibility variants (A572D and Q573E) alter CaMKII-dependent regulation of Nav1.5 resulting in abnormal channel activity and cell excitability. In silico analysis reveals that these variants functionally mimic the phosphorylated channel resulting in increased susceptibility to arrhythmia-triggering afterdepolarizations. Finally, we report that this same motif is aberrantly regulated in a large animal model of acquired heart disease and in failing human myocardium.
Conclusions
We identify the mechanism for two human arrhythmia variants that affect Nav1.5 channel activity through direct effects on channel post-translational modification. We propose that the CaMKII phosphorylation motif in the Nav1.5 DI-DII cytoplasmic loop is a critical nodal point for pro-arrhythmic changes to Nav1.5 in congenital and acquired cardiac disease.
doi:10.1161/CIRCULATIONAHA.112.105320
PMCID: PMC3811023  PMID: 23008441
arrhythmia (mechanisms); calmodulin dependent protein kinase II; heart failure; ion channels; long-QT syndrome; myocardial infarction
5.  Cycle Length Restitution in Sinoatrial Node Cells: A Theory for Understanding Spontaneous Action Potential Dynamics 
PLoS ONE  2014;9(2):e89049.
Normal heart rhythm (sinus rhythm) is governed by the sinoatrial node, a specialized and highly heterogeneous collection of spontaneously active myocytes in the right atrium. Sinoatrial node dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, is associated with cardiovascular disease (e.g. heart failure, atrial fibrillation). While tremendous progress has been made in understanding the molecular and ionic basis of automaticity in sinoatrial node cells, the dynamics governing sinoatrial nodel cell synchrony and overall pacemaker function remain unclear. Here, a well-validated computational model of the mouse sinoatrial node cell is used to test the hypothesis that sinoatrial node cell dynamics reflect an inherent restitution property (cycle length restitution) that may give rise to a wide range of behavior from regular periodicity to highly complex, irregular activation. Computer simulations are performed to determine the cycle length restitution curve in the computational model using a newly defined voltage pulse protocol. The ability of the restitution curve to predict sinoatrial node cell dynamics (e.g., the emergence of irregular spontaneous activity) and susceptibility to termination is evaluated. Finally, ionic and tissue level factors (e.g. ion channel conductances, ion concentrations, cell-to-cell coupling) that influence restitution and sinoatrial node cell dynamics are explored. Together, these findings suggest that cycle length restitution may be a useful tool for analyzing cell dynamics and dysfunction in the sinoatrial node.
doi:10.1371/journal.pone.0089049
PMCID: PMC3923067  PMID: 24533169
6.  Genetic Inhibition of Na+-Ca2+ Exchanger Current Disables Fight or Flight Sinoatrial Node Activity Without Affecting Resting Heart Rate 
Circulation research  2012;112(2):309-317.
Rationale
The sodium-calcium exchanger 1 (NCX1) is predominantly expressed in the heart and is implicated in controlling automaticity in isolated sinoatrial nodal (SAN) pacemaker cells, but the potential role of NCX1 in determining heart rate in vivo is unknown.
Objective
Determine the role of Ncx1 in heart rate.
Methods and Results
We employed global myocardial and SAN-targeted conditional Ncx1 knockout (Ncx1−/−) mice to measure the effect of the NCX current (INCX) in pacemaking activity in vivo, ex vivo and in isolated SAN cells. We induced conditional Ncx1−/− using a Cre/loxP system. Unexpectedly, in vivo and ex vivo hearts and isolated SAN cells showed that basal rates in Ncx1−/− (retaining ~20% of control level INCX) and control mice were similar, suggesting that physiological NCX1 expression is not required for determining resting heart rate. However, heart rate and SAN cell automaticity increases in response to isoproterenol or the dihydropyridine Ca2+ channel agonist BayK8644 were significantly blunted or eliminated in Ncx1−/− mice, indicating that NCX1 is important for fight or flight heart rate responses. In contrast the ‘pacemaker’ current (If) and L-type Ca2+ currents were equivalent in control and Ncx1−/− SAN cells under resting and isoproterenol-stimulated conditions. Ivabradine, an If antagonist with clinical efficacy, reduced basal SAN cell automaticity similarly in control and Ncx1−/− mice. However, ivabradine decreased automaticity in SAN cells isolated from Ncx1−/− mice more effectively than in control SAN cells after isoproterenol, suggesting that the importance of INCX in fight or flight rate increases is enhanced after If inhibition.
Conclusion
Physiological Ncx1 expression is required for increasing sinus rates in vivo, ex vivo and in isolated SAN cells but not for maintaining resting heart rate.
doi:10.1161/CIRCRESAHA.111.300193
PMCID: PMC3562595  PMID: 23192947
Na+-Ca2+ exchange; sinoatrial node; L-type Ca2+ channels; pacemaker current; ion channel
7.  A Novel Core-Shell Microcapsule for Encapsulation and 3D Culture of Embryonic Stem Cells 
In this study, we report the preparation of a novel microcapsule of ~ 100 μm with a liquid (as compared to solid-like alginate hydrogel) core and an alginate-chitosan-alginate (ACA) shell for encapsulation and culture of embryonic stem (ES) cells in the miniaturized 3D space of the liquid core. Murine R1 ES cells cultured in the microcapsules were found to survive (> 90%) well and proliferate to form either a single aggregate of pluripotent cells or embryoid body (EB) of more differentiated cells in each microcapsule within 7 days, dependent on the culture medium used. This novel microcapsule technology allows massive production of the cell aggregates or EBs of uniform size and controllable pluripotency, which is important for the practical application of stem cell based therapy. Moreover, the semipermeable ACA shell was found to significantly reduce immunoglobulin G (IgG) binding to the encapsulated cells by up to 8.2 times, compared to non-encapsulated cardiac fibroblasts, mesenchymal stem cells, and ES cells. This reduction should minimize inflammatory and immune responses induced damage to the cells implanted in vivo becasue IgG binding is an important first step of the undesired host responses. Therefore, the ACA microcapsule with selective shell permeability should be of importance to advance the emerging cell-based medicine.
doi:10.1039/C2TB00058J
PMCID: PMC3596163  PMID: 23505611
8.  CaMKII inhibition rescues pro-arrhythmic phenotypes in model of human ankyrin-B syndrome 
Background
Cardiovascular disease is a leading cause of death worldwide. Arrhythmias are associated with significant morbidity and mortality related to cardiovascular disease. Recent work illustrates that many cardiac arrhythmias are initiated by a pathologic imbalance between kinase and phosphatase activities in excitable cardiomyocytes.
Objective
We tested the relationship between myocyte kinase/phosphatase imbalance and cellular and whole animal arrhythmia phenotypes associated with ankyrin-B cardiac syndrome.
Methods
Using a combination of biochemical, electrophysiological, and in vivo approaches, we tested the ability of CaMKII inhibition to rescue imbalance in kinase/phosphatase pathways associated with human ankyrin-B-associated cardiac arrhythmia.
Results
The cardiac ryanodine receptor (RyR2), a validated target of kinase/phosphatase regulation in myocytes, displays abnormal CaMKII-dependent phosphorylation (pS2814 hyperphosphorylation) in ankyrin-B+/− heart. Notably, RyR2 dysregulation is rescued in myocytes from ankyrin-B+/− mice overexpressing a potent CaMKII-inhibitory peptide (AC3I) and aberrant RyR2 open probability observed in ankyrin-B+/− hearts is normalized by treatment with the CaMKII inhibitor KN-93. CaMKII-inhibition is sufficient to rescue abnormalities in ankyrin-B+/− myocyte electrical dysfunction including cellular afterdepolarizations, and significantly blunts whole animal cardiac arrhythmias and sudden death in response to elevated sympathetic tone.
Conclusions
These findings illustrate the complexity of the molecular components involved in human arrhythmia and define regulatory elements of the ankyrin-B pathway in pathophysiology. Furthermore, the findings illustrate the potential impact of CaMKII-inhibition in the treatment of a congenital form of human cardiac arrhythmia.
doi:10.1016/j.hrthm.2012.08.026
PMCID: PMC3630478  PMID: 23059182
ankyrin; CaMKII; ryanodine receptor; spectrin; arrhythmia
9.  Ankyrin regulates KATP channel membrane trafficking and gating in excitable cells 
Channels (Austin, Tex.)  2010;4(1):55-57.
K(ATP) channels play critical roles in many cellular functions by coupling cell metabolic status to electrical activity. First discovered in cardiomyocytes,1 KATP channels (comprised of Kir6.x and SUR subunits) have since been found in many other tissues, including pancreatic beta cells, skeletal muscle, smooth muscle, brain, pituitary and kidney. By linking cellular metabolic state with membrane potential, KATP channels are able to regulate a number of cellular functions such as hormone secretion, vascular tone and excitability. Specifically, a reduction in metabolism causes a decrease in the ATP:ADP ratio, opening of KATP channels, K+ efflux, membrane hyperpolarization, and suppression of electrical activity. Conversely, increased cellular metabolism causes an increase in the ATP:ADP ratio that leads to closure of the KATP channel, membrane depolarization, and stimulation of cell electrical activity.
PMCID: PMC3671389  PMID: 19901534
ankyrin; spectrin; trafficking; targeting; cytoskeleton; diabetes
10.  Ankyrin-G Participates in INa Remodeling in Myocytes from the Border Zones of Infarcted Canine Heart 
PLoS ONE  2013;8(10):e78087.
Cardiac Na channel remodeling provides a critical substrate for generation of reentrant arrhythmias in border zones of the infarcted canine heart. Recent studies show that Nav1.5 assembly and function are linked to ankyrin-G, gap, and mechanical junction proteins. In this study our objective is to expound the status of the cardiac Na channel, its interacting protein ankyrinG and the mechanical and gap junction proteins at two different times post infarction when arrhythmias are known to occur; that is, 48 hr and 5 day post coronary occlusion. Previous studies have shown the origins of arrhythmic events come from the subendocardial Purkinje and epicardial border zone. Our Purkinje cell (Pcell) voltage clamp study shows that INa and its kinetic parameters do not differ between Pcells from the subendocardium of the 48hr infarcted heart (IZPCs) and control non-infarcted Pcells (NZPCs). Immunostaining studies revealed that disturbances of Nav1.5 protein location with ankyrin-G are modest in 48 hr IZPCs. Therefore, Na current remodeling does not contribute to the abnormal conduction in the subendocardial border zone 48 hr post myocardial infarction as previously defined. In addition, immunohistochemical data show that Cx40/Cx43 co-localize at the intercalated disc (IDs) of control NZPCs but separate in IZPCs. At the same time, Purkinje cell desmoplakin and desmoglein2 immunostaining become diffuse while plakophilin2 and plakoglobin increase in abundance at IDs. In the epicardial border zone 5 days post myocardial infarction, immunoblot and immunocytochemical analyses showed that ankyrin-G protein expression is increased and re-localized to submembrane cell regions at a time when Nav1.5 function is decreased. Thus, Nav1.5 and ankyrin-G remodeling occur later after myocardial infarction compared to that of gap and mechanical junctional proteins. Gap and mechanical junctional proteins remodel in IZPCs early, perhaps to help maintain Nav1.5 subcellular location position and preserve its function soon after myocardial infarction.
doi:10.1371/journal.pone.0078087
PMCID: PMC3796465  PMID: 24155982
11.  CaMKII: linking heart failure and arrhythmias 
Circulation research  2012;110(12):1661-1677.
Understanding relationships between heart failure and arrhythmias, important causes of suffering and sudden death, remains an unmet goal for biomedical researchers and physicians. Evidence assembled over the last decade supports a view that activation of the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) favors myocardial dysfunction and cell membrane electrical instability. CaMKII activation follows increases in intracellular Ca2+ or oxidation, upstream signals with the capacity to transition CaMKII into a Ca2+ and calmodulin-independeant, constitutively active enzyme. Constitutively active CaMKII appears poised to participate in disease pathways by catalyzing the phosphorylation of classes of protein targets important for excitation-contraction coupling and cell survival, including ion channels and Ca2+ homeostatic proteins, and transcription factors that drive hypertrophic and inflammatory gene expression. This rich diversity of downstream targets helps to explain the potential for CaMKII to simultaneously affect mechanical and electrical properties of heart muscle cells. Proof of concept studies from a growing number of investigators show that CaMKII inhibition is beneficial for improving myocardial performance and reducing arrhythmias. Here we review the molecular physiology of CaMKII, discuss CaMKII actions at key cellular targets and results of animal models of myocardial hypertrophy, dysfunction and arrhythmias that suggest CaMKII inhibition may benefit myocardial function while reducing arrhythmias.
doi:10.1161/CIRCRESAHA.111.243956
PMCID: PMC3789535  PMID: 22679140
CaMKII; Arrhythmias; Heart Failure; Ion channels; Remodeling
12.  Differential Regulation of EHD3 in Human and Mammalian Heart Failure 
Electrical and structural remodeling during the progression of cardiovascular disease is associated with adverse outcomes subjecting affected patients to overt heart failure (HF) and/or sudden death. Dysfunction in integral membrane protein trafficking has long been linked with maladaptive electrical remodeling. However, little is known regarding the molecular identity or function of these intracellular targeting pathways in the heart. Eps15 homology domain-containing (EHD) gene products (EHD1-4) are polypeptides linked with endosomal trafficking, membrane protein recycling, and lipid homeostasis in a wide variety of cell types. EHD3 was recently established as a critical mediator of membrane protein trafficking in the heart. Here, we investigate the potential link between EHD3 function and heart disease. Using four different HF models including ischemic rat heart, pressure overloaded mouse heart, chronic pacing-induced canine heart, and non-ischemic failing human myocardium we provide the first evidence that EHD3 levels are consistently increased in HF. Notably, the expression of the Na/Ca exchanger (NCX1), targeted by EHD3 in heart is similarly elevated in HF. Finally, we identify a molecular pathway for EHD3 regulation in heart failure downstream of reactive oxygen species and angiotensin II signaling. Together, our new data identify EHD3 as a previously unrecognized component of the cardiac remodeling pathway.
doi:10.1016/j.yjmcc.2012.02.008
PMCID: PMC3360944  PMID: 22406195
EHD proteins; heart failure; cardiac remodeling; regulation; animal models
14.  Reduced Heterogeneous Expression Of Cx43 Results In Decreased Nav1.5 Expression And Reduced Sodium Current Which Accounts For Arrhythmia Vulnerability In Conditional Cx43 Knockout Mice 
Heart Rhythm  2011;9(4):600-607.
Background
Reduced Connexin43 (Cx43), sodium channel (Nav1.5) expression and increased collagen expression (fibrosis) are important determinants of impulse conduction in the heart.
Objective
To study the importance and interaction of these factors at very low Cx43 expression, inducible Cx43 KO mice with and without inducible ventricular tachycardia (VT) were compared by electrophysiology and immunohistochemistry.
Methods
Cx43CreER(T)/fl mice were induced with Tamoxifen and sacrificed after 2 weeks. Epicardial activation mapping was performed on Langendorff-perfused hearts, and arrhythmia vulnerability was tested. Mice were subdivided in VT+ (n=13) and VT− (n=10) and heart tissue was analyzed for Cx43, Nav1.5 and fibrosis.
Results
VT+ mice had decreased Cx43 expression with increased global, but not local, heterogeneity of Cx43, compared to VT− mice. Nav1.5-immunoreactive protein expression was reduced in VT+ versus VT− mice, specifically at sites devoid of Cx43. Levels of fibrosis were similar between VT− and VT+ mice. QRS-duration was increased and epicardial activation was more dispersed in VT+ mice than in VT− mice. The effective refractory period (ERP) was similar between both groups. Premature stimulation resulted in a more severe conduction slowing in VT+ compared to VT− hearts in the right ventricle. Separate patch clamp experiments in isolated rat ventricular myocytes confirmed that loss of Cx43 expression correlated with decreased sodium current amplitude.
Conclusions
Global heterogeneity in Cx43 expression and concomitant heterogeneous downregulation of sodium channel protein expression and sodium current leads to slowed and dispersed conduction, which sensitizes the heart for ventricular arrhythmias.
doi:10.1016/j.hrthm.2011.11.025
PMCID: PMC3336370  PMID: 22100711
Cx43; Nav1.5; heterogeneity; sodium current; arrhythmia
15.  Diabetes increases mortality after myocardial infarction by oxidizing CaMKII 
The Journal of Clinical Investigation  2013;123(3):1262-1274.
Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.
doi:10.1172/JCI65268
PMCID: PMC3673230  PMID: 23426181
16.  Role for CaMKII in cardiovascular health, disease, and arrhythmia 
doi:10.1016/j.hrthm.2010.07.029
PMCID: PMC2988944  PMID: 20673813
calmodulin kinase II; calcium signaling; electrophysiology arrhythmogenesis; heart failure
17.  Oxidized CaMKII causes cardiac sinus node dysfunction in mice 
The Journal of Clinical Investigation  2011;121(8):3277-3288.
Sinus node dysfunction (SND) is a major public health problem that is associated with sudden cardiac death and requires surgical implantation of artificial pacemakers. However, little is known about the molecular and cellular mechanisms that cause SND. Most SND occurs in the setting of heart failure and hypertension, conditions that are marked by elevated circulating angiotensin II (Ang II) and increased oxidant stress. Here, we show that oxidized calmodulin kinase II (ox-CaMKII) is a biomarker for SND in patients and dogs and a disease determinant in mice. In wild-type mice, Ang II infusion caused sinoatrial nodal (SAN) cell oxidation by activating NADPH oxidase, leading to increased ox-CaMKII, SAN cell apoptosis, and SND. p47–/– mice lacking functional NADPH oxidase and mice with myocardial or SAN-targeted CaMKII inhibition were highly resistant to SAN apoptosis and SND, suggesting that ox-CaMKII–triggered SAN cell death contributed to SND. We developed a computational model of the sinoatrial node that showed that a loss of SAN cells below a critical threshold caused SND by preventing normal impulse formation and propagation. These data provide novel molecular and mechanistic information to understand SND and suggest that targeted CaMKII inhibition may be useful for preventing SND in high-risk patients.
doi:10.1172/JCI57833
PMCID: PMC3223923  PMID: 21785215
18.  Defects in ankyrin-based membrane protein targeting pathways underlie atrial fibrillation 
Circulation  2011;124(11):1212-1222.
Background
Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting over two million patients in the US alone. Despite decades of research, surprisingly little is known regarding the molecular pathways underlying the pathogenesis of AF. ANK2 encodes ankyrin-B, a multifunctional adapter molecule implicated in membrane targeting of ion channels, transporters, and signaling molecules in excitable cells.
Methods and Results
Here, we report early-onset AF in patients harboring loss-of-function mutations in ANK2. In mice, we show that ankyrin-B-deficiency results in atrial electrophysiological dysfunction and increased susceptibility to AF. Moreover, ankyrin-B+/− atrial myocytes display shortened action potentials, consistent with human AF. Ankyrin-B is expressed in atrial myocytes, and we demonstrate its requirement for the membrane targeting and function of a subgroup of voltage-gated Ca2+ channels (Cav1.3) responsible for low-voltage activated L-type Ca2+current. Ankyrin-B directly associates with Cav1.3, and this interaction is regulated by a short, highly-conserved motif specific to Cav1.3. Moreover, loss of ankyrin-B in atrial myocytes results in decreased Cav1.3 expression, membrane localization, and function sufficient to produce shortened atrial action potentials and arrhythmias. Finally, we demonstrate reduced ankyrin-B expression in atrial samples of patients with documented AF, further supporting an association between ankyrin-B and AF.
Conclusions
These findings support that reduced ankyrin-B expression or mutations in ANK2 are associated with atrial fibrillation. Additionally, our data demonstrate a novel pathway for ankyrin-B-dependent regulation of Cav1.3 channel membrane targeting and regulation in atrial myocytes.
doi:10.1161/CIRCULATIONAHA.111.023986
PMCID: PMC3211046  PMID: 21859974
Ankyrin; atrial fibrillation; calcium channel; ion channel targeting
19.  A βIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice  
The Journal of Clinical Investigation  2010;120(10):3508-3519.
Ion channel function is fundamental to the existence of life. In metazoans, the coordinate activities of voltage-gated Na+ channels underlie cellular excitability and control neuronal communication, cardiac excitation-contraction coupling, and skeletal muscle function. However, despite decades of research and linkage of Na+ channel dysfunction with arrhythmia, epilepsy, and myotonia, little progress has been made toward understanding the fundamental processes that regulate this family of proteins. Here, we have identified βIV-spectrin as a multifunctional regulatory platform for Na+ channels in mice. We found that βIV-spectrin targeted critical structural and regulatory proteins to excitable membranes in the heart and brain. Animal models harboring mutant βIV-spectrin alleles displayed aberrant cellular excitability and whole animal physiology. Moreover, we identified a regulatory mechanism for Na+ channels, via direct phosphorylation by βIV-spectrin–targeted calcium/calmodulin-dependent kinase II (CaMKII). Collectively, our data define an unexpected but indispensable molecular platform that determines membrane excitability in the mouse heart and brain.
doi:10.1172/JCI43621
PMCID: PMC2947241  PMID: 20877009
20.  Catecholamine-Independent Heart Rate Increases Require CaMKII 
Background
Catecholamines increase heart rate by augmenting the cAMP responsive HCN4 ‘pacemaker current’ (If) and/or by promoting inward Na+/Ca2+ exchanger current (INCX), by a ‘Ca2+ clock’ mechanism in sinoatrial nodal cells (SANCs). The importance, identity and function of signals that connect If and Ca2+ clock mechanisms are uncertain and controversial, but the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is required for physiological heart rate responses to β-adrenergic receptor (β-AR) stimulation. The aim of this stuy is to measure the contribution of the Ca2+ clock and CaMKII to cardiac pacing independent of β-AR agonist stimulation.
Methods and Results
We used the L-type Ca2+ channel agonist BayK 8644 (BayK) to activate the SANC Ca2+ clock. BayK and isoproterenol were similarly effective in increasing rates in SANCs and Langendorff-perfused hearts from WT control mice. In contrast, SANCs and isolated hearts from mice with CaMKII inhibition by transgenic expression of an inhibitory peptide (AC3-I) were resistant to rate increases by BayK. BayK only activated CaMKII in control SANCs, but increased ICa equally in all SANCs, indicating that increasing ICa was insufficient and suggesting CaMKII activation was required for heart rate increases by BayK. BayK did not increase If or protein kinase A (PKA)-dependent phosphorylation of phospholamban (at Ser16), indicating that increased SANC Ca2+ by BayK did not augment cAMP/PKA signaling at these targets. Late diastolic intracellular Ca2+ release and INCX were significantly reduced in AC3-I SANCs and the response to BayK was eliminated by ryanodine in all groups.
Conclusions
The Ca2+ clock is capable of supporting physiological fight or flight responses, independent of β-AR stimulation or If increases. Complete Ca2+ clock and β-AR stimulation responses require CaMKII.
doi:10.1161/CIRCEP.110.961771
PMCID: PMC3116039  PMID: 21406683
Ca2+/calmodulin-dependent protein kinase (CaMKII); sinoatrial node cells; L-type Ca2+ channels; pacemaker current; sarcoplasmic reticulum
21.  Defects in Cytoskeletal Signaling Pathways, Arrhythmia, and Sudden Cardiac Death 
Ankyrin polypeptides are cellular adapter proteins that tether integral membrane proteins to the cytoskeleton in a host of human organs. Initially identified as integral components of the cytoskeleton in erythrocytes, a recent explosion in ankyrin research has demonstrated that these proteins play prominent roles in cytoskeletal signaling pathways and membrane protein trafficking/regulation in a variety of excitable and non-excitable cells including heart and brain. Importantly, ankyrin research has translated from bench to bedside with the discovery of human gene variants associated with ventricular arrhythmias that alter ankyrin–based pathways. Ankyrin polypeptides have also been found to play an instrumental role in various forms of sinus node disease and atrial fibrillation (AF). Mouse models of ankyrin-deficiency have played fundamental roles in the translation of ankyrin-based research to new clinical understanding of human sinus node disease, AF, and ventricular tachycardia.
doi:10.3389/fphys.2012.00122
PMCID: PMC3343379  PMID: 22586405
ankyrin; spectrin; arrhythmia; cytoskeleton; mouse model
22.  Role of activated CaMKII in abnormal calcium homeostasis and INa remodeling after myocardial infarction: Insights from mathematical modeling 
Ca2+/calmodulin-dependent protein kinase II is a multifunctional serine/threonine kinase with diverse cardiac roles including regulation of excitation contraction, transcription, and apoptosis. Dynamic regulation of CaMKII activity occurs in cardiac disease and is linked to specific disease phenotypes through its effects on ion channels, transporters, transcription and cell death pathways. Recent mathematical models of the cardiomyocyte have incorporated limited elements of CaMKII signaling to advance our understanding of how CaMKII regulates cardiac contractility and excitability. Given the importance of CaMKII in cardiac disease, it is imperative that computer models evolve to capture the dynamic range of CaMKII activity. In this study, using mathematical modeling combined with biochemical and imaging techniques, we test the hypothesis that CaMKII signaling in the canine infarct border zone (BZ) contributes to impaired calcium homeostasis and electrical remodeling. We report that the level of CaMKII autophosphorylation is significantly increased in the BZ region. Computer simulations using an updated mathematical model of CaMKII signaling reproduce abnormal Ca2+ transients and action potentials characteristic of the BZ. Our simulations show that CaMKII hyperactivity contributes to abnormal Ca2+ homeostasis and reduced action potential upstroke velocity due to effects on INa gating kinetics. In conclusion, we present a new mathematical tool for studying effects of CaMKII signaling on cardiac excitability and contractility over a dynamic range of kinase activities. Our experimental and theoretical findings establish abnormal CaMKII signaling as an important component of remodeling in the canine BZ.
doi:10.1016/j.yjmcc.2008.06.007
PMCID: PMC2587155  PMID: 18639555
Calcium/calmodulin-dependent protein kinase II; myocardial infarction; calcium handling; mathematical modeling; arrhythmia
23.  Proarrhythmic defects in Timothy Syndrome require calmodulin kinase II 
Circulation  2008;118(22):2225-2234.
Background
Timothy Syndrome (TS) is a disease of excessive cellular Ca2+ entry and life-threatening arrhythmias due to a mutation in the primary cardiac L-type Ca2+ channel (CaV1.2). The TS mutation causes loss of normal voltage-dependent inactivation (VDI) of CaV1.2 current (ICa). During cellular Ca2+ overload the calmodulin-dependent protein kinase II (CaMKII) causes arrhythmias. We hypothesized that CaMKII is a part of the proarrhythmic mechanism in TS.
Methods and Results
We developed an adult rat ventricular myocyte model of TS (G406R) by lenti virus-mediated transfer of wild type (WT) and TS CaV1.2. The exogenous CaV1.2 contained a mutation (T1066Y) conferring dihydropyridine resistance, so we could silence endogenous CaV1.2 with nifedipine and maintain peak ICa at control levels in infected cells. TS CaV1.2 infected ventricular myocytes exhibited the signature VDI loss under Ca2+ buffering conditions, not permissive for CaMKII activation. In physiological Ca2+ solutions, TS CaV1.2 expressing ventricular myocytes exhibited increased CaMKII activity and a proarrhythmic phenotype that included action potential prolongation, increased ICa facilitation and afterdepolarizations. Intracellular dialysis of a CaMKII inhibitory peptide, but not a control peptide, reversed increases in ICa facilitation, normalized the action potential and prevented afterdepolarizations. We developed a revised mathematical model that accounts for CaMKII-dependent and CaMKII-independent effects of the TS mutation.
Conclusions
In TS the loss of VDI is an upstream initiating event for arrhythmia phenotypes that are ultimately dependent on CaMKII activation.
doi:10.1161/CIRCULATIONAHA.108.788067
PMCID: PMC3226825  PMID: 19001023
action potentials; calcium; ion channels; myocytes
24.  A Computational Investigation of Cardiac Caveolae as a Source of Persistent Sodium Current 
Recent studies of cholesterol-rich membrane microdomains, called caveolae, reveal that caveolae are reservoirs of “recruitable” sodium ion channels. Caveolar channels constitute a substantial and previously unrecognized source of sodium current in cardiac cells. In this paper we model for the first time caveolar sodium currents and their contributions to cardiac action potential morphology. We show that the β-agonist-induced opening of caveolae may have substantial impacts on peak overshoot, maximum upstroke velocity, and ultimately conduction velocity. Additionally, we show that prolonged action potentials and the formation of potentially arrhythmogenic afterdepolarizations, can arise if caveolae open intermittently throughout the action potential. Our simulations suggest that caveolar sodium current may constitute a route, which is independent of channelopathies, to delayed repolarization and the arrhythmias associated with such delays.
doi:10.3389/fphys.2011.00087
PMCID: PMC3229093  PMID: 22144962
caveolae; cardiomyocyte; caveolin-3; mathematical model; β-adrenergic; LQT9
25.  EH domain proteins regulate cardiac membrane protein targeting 
Circulation research  2010;107(1):84-95.
Rationale
Cardiac membrane excitability is tightly regulated by an integrated network of membrane-associated ion channels, transporters, receptors, and signaling molecules. Membrane protein dynamics in health and disease are maintained by a complex ensemble of intracellular targeting, scaffolding, recycling, and degradation pathways. Surprisingly, despite decades of research linking dysfunction in membrane protein trafficking with human cardiovascular disease, essentially nothing is known regarding the molecular identity or function of these intracellular targeting pathways in excitable cardiomyocytes.
Objective
We sought to discover novel pathways for membrane protein targeting in primary cardiomyocytes.
Methods and Results
We report the initial characterization of a large family of membrane trafficking proteins in human heart. We employed a tissue-wide screen for novel ankyrin-associated trafficking proteins and identified four members of a unique Eps15 homology (EH) domain-containing protein family (EHD1, EHD2, EHD3, EHD4) that serve critical roles in endosome-based membrane protein targeting in other cell types. We show that EHD1-4 directly associate with ankyrin, provide the first information on the expression and localization of these molecules in primary cardiomyocytes, and demonstrate that EHD1-4 are co-expressed with ankyrin-B in the myocyte perinuclear region. Notably, the expression of multiple EHD proteins is increased in animal models lacking ankyrin-B, and EHD3-deficient cardiomyocytes display aberrant ankyrin-B localization and selective loss of Na/Ca exchanger expression and function. Finally, we report significant modulation of EHD expression following myocardial infarction, suggesting that these proteins may play a key role in regulating membrane excitability in normal and diseased heart.
Conclusions
Our findings identify and characterize a new class of cardiac trafficking proteins, define the first group of proteins associated with the ankyrin-based targeting network, and identify potential new targets to modulate membrane excitability in disease. Notably, these data provide the first link between EHD proteins and a human disease model.
doi:10.1161/CIRCRESAHA.110.216713
PMCID: PMC2901408  PMID: 20489164
trafficking; ion channel; ankyrin; EHD proteins; cytoskeleton; arrhythmia

Results 1-25 (34)