Search tips
Search criteria

Results 1-25 (260)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Lesion discrimination with breath-hold hepatic diffusion-weighted imaging: A meta-analysis 
AIM: To investigate the diagnostic capability of breath-hold diffusion-weighted imaging (DWI) for differentiation between malignant and benign hepatic lesions.
METHODS: A total of 614 malignant liver lesions (132 hepatocellular carcinomas, 468 metastases and 14 intrahepatic cholangiocarcinomas) and 291 benign liver lesions (102 hemangiomas, 158 cysts, 24 focal nodular hyperplasia, 1 angiomyolipoma and 6 hepatic adenomas) were included from seven studies (eight sets of data).
RESULTS: The pooled sensitivity and specificity of breath-hold DWI were 0.93 [95% confidence interval (CI): 0.91-0.95] and 0.87 (95%CI: 0.83-0.91), respectively. The positive likelihood ratio and negative likelihood ratio were 7.28 (95%CI: 4.51-11.76) and 0.09 (95%CI: 0.05-0.17), respectively. The P value for χ2 heterogeneity for all pooled estimates was < 0.05. From the fitted summary receiver operating characteristic curve, the area under the curve and Q* index were 0.96 and 0.91, respectively. Publication bias was not present (t = 0.49, P = 0.64). The meta-regression analysis indicated that evaluated covariates including magnetic resonance imaging modality, echo time, mean age, maximum b factor, and number of b factors were not sources of heterogeneity (all P > 0.05).
CONCLUSION: Breath-hold DWI is useful for differentiating between malignant and benign hepatic lesions. The diffusion characteristics of benign lesions that mimic malignant ones have rarely been investigated.
PMCID: PMC4316105  PMID: 25663782
Breath-hold imaging; Diffusion-weighted imaging; Hepatic tumor; Meta-analysis
2.  Chikungunya Viruses That Escape Monoclonal Antibody Therapy Are Clinically Attenuated, Stable, and Not Purified in Mosquitoes 
Journal of Virology  2014;88(15):8213-8226.
Chikungunya virus (CHIKV) is a reemerging mosquito-transmitted alphavirus that causes epidemics of debilitating polyarthritis in humans. A prior study identified two anti-CHIKV monoclonal antibodies ([MAbs] CHK-152 and CHK-166) against the E2 and E1 structural proteins, which had therapeutic efficacy in immunocompetent and immunocompromised mice. Combination MAb therapy was required as administration of a single MAb resulted in the rapid selection of neutralization escape variants and treatment failure in mice. Here, we initially evaluated the efficacy of combination MAb therapy in a nonhuman primate model of CHIKV infection. Treatment of rhesus macaques with CHK-152 and CHK-166 reduced viral spread and infection in distant tissue sites and also neutralized reservoirs of infectious virus. Escape viruses were not detected in the residual viral RNA present in tissues and organs of rhesus macaques. To evaluate the possible significance of MAb resistance, we engineered neutralization escape variant viruses (E1-K61T, E2-D59N, and the double mutant E1-K61T E2-D59N) that conferred resistance to CHK-152 and CHK-166 and tested them for fitness in mosquito cells, mammalian cells, mice, and Aedes albopictus mosquitoes. In both cell culture and mosquitoes, the mutant viruses grew equivalently and did not revert to wild-type (WT) sequence. All escape variants showed evidence of mild clinical attenuation, with decreased musculoskeletal disease at early times after infection in WT mice and a prolonged survival time in immunocompromised Ifnar1−/− mice. Unexpectedly, this was not associated with decreased infectivity, and consensus sequencing from tissues revealed no evidence of reversion or compensatory mutations. Competition studies with CHIKV WT also revealed no fitness compromise of the double mutant (E1-K61T E2-D59N) neutralization escape variant in WT mice. Collectively, our study suggests that neutralization escape viruses selected during combination MAb therapy with CHK-152 plus CHK-166 retain fitness, cause less severe clinical disease, and likely would not be purified during the enzootic cycle.
IMPORTANCE Chikungunya virus (CHIKV) causes explosive epidemics of acute and chronic arthritis in humans in Africa, the Indian subcontinent, and Southeast Asia and recently has spread to the New World. As there are no approved vaccines or therapies for human use, the possibility of CHIKV-induced debilitating disease is high in many parts of the world. To this end, our laboratory recently generated a combination monoclonal antibody therapy that aborted lethal and arthritogenic disease in wild-type and immunocompromised mice when administered as a single dose several days after infection. In this study, we show the efficacy of the antibody combination in nonhuman primates and also evaluate the significance of possible neutralization escape mutations in mosquito and mammalian cells, mice, and Aedes albopictus vector mosquitoes. Our experiments show that escape viruses from combination antibody therapy cause less severe CHIKV clinical disease, retain fitness, and likely would not be purified by mosquito vectors.
PMCID: PMC4135940  PMID: 24829346
3.  SynBioLGDB: a resource for experimentally validated logic gates in synthetic biology 
Scientific Reports  2015;5:8090.
Synthetic biologists have developed DNA/molecular modules that perform genetic logic operations in living cells to track key moments in a cell's life or change the fate of a cell. Increasing evidence has also revealed that diverse genetic logic gates capable of generating a Boolean function play critically important roles in synthetic biology. Basic genetic logic gates have been designed to combine biological science with digital logic. SynBioLGDB ( aims to provide the synthetic biology community with a useful resource for efficient browsing and visualization of genetic logic gates. The current version of SynBioLGDB documents more than 189 genetic logic gates with experimental evidence involving 80 AND gates and 16 NOR gates, etc. in three species (Human, Escherichia coli and Bacillus clausii). SynBioLGDB provides a user-friendly interface through which conveniently to query and browse detailed information about these genetic logic gates. SynBioLGDB will enable more comprehensive understanding of the connection of genetic logic gates to execute complex cellular functions in living cells.
PMCID: PMC4308699  PMID: 25627341
4.  The Type III Secretion System (T3SS) of Chlamydophila psittaci Is Involved in the Host Inflammatory Response by Activating the JNK/ERK Signaling Pathway 
BioMed Research International  2015;2015:652416.
Chlamydophila psittaci (C. psittaci) is a human zoonotic pathogen, which could result in severe respiratory disease. In the present study, we investigated the role and mechanism of the type III secretion system (T3SS) of C. psittaci in regulating the inflammatory response in host cells. C. psittaci-infected THP-1 cells were incubated with the specific T3SS inhibitor INP0007, inhibitors of ERK, p38, or JNK, and the levels of inflammatory cytokines were analyzed using Q-PCR and ELISA. The levels of ERK, p38, and JNK phosphorylation were analyzed by Western blot. Our results verified that INP0007 inhibited chlamydial growth in vitro, but the coaddition of exogenous iron completely reversed the growth deficit. INP0007 inhibited the growth of C. psittaci and decreased the levels of IL-8, IL-6, TNF-α, and IL-1β. Exogenous iron restored the chlamydial growth but not the production of inflammatory cytokines. These results demonstrated that the expression of inflammatory cytokines during infection was associated with the T3SS which reduced by incubation with ERK and JNK inhibitors, but not with p38 inhibitor. We concluded that the T3SS elicited inflammatory responses by activating the JNK or ERK signaling pathways in the infection of C. psittaci.
PMCID: PMC4317586
5.  Genome Sequence of an Extensively Drug-Resistant Strain of Klebsiella pneumoniae, Strain YN-1, with Carbapenem Resistance 
Genome Announcements  2015;3(1):e01279-14.
The emergence and spread of multidrug-resistant (MDR) Klebsiella pneumoniae has been regarded as one of the major challenges among health care-associated infections worldwide. Here, we report the draft genome sequence of an extensively drug-resistant (XDR) K. pneumoniae strain isolated in 2013 from Yunnan Province, China.
PMCID: PMC4290976  PMID: 25573939
6.  Connexin 31.1 degradation requires the Clathrin-mediated autophagy in NSCLC cell H1299 
Connexins have relative short half-lives. Connexin 31.1 (Cx31.1) was newly reported to be down-regulated in non-small cell lung cancer cell lines, and displayed tumour-suppressive properties. However, no reports describing how a cell regulates Cx31.1 level were found. In this study, Cx31.1 was suggested to be degraded through both ubiquitin–proteasome system (UPS) and autophagy. Blockage of UPS with MG-132 increased Cx31.1 level, but could not inhibit the degradation of Cx31.1 completely. In H1299 cells stably expressing Cx31.1, Cx31.1 reduced when autophagy was induced through starvation or Brefeldin A treatment. Knockdown of autophagy-related protein ATG5 could increase the cellular level of Cx31.1 both under normal growth condition and starvation-induced autophagy. Colocalization of Cx31.1 and autophagy marker light chain 3 (LC3) was revealed by immunofluorescence analysis. Coimmunoprecipitation and immunofluorescence showed that Cx31.1 might interact with clathrin heavy chain which was newly reported to regulate autophagic lysosome reformation (ALR) and controls lysosome homoeostasis. When clathrin expression was knockdown by siRNA treatment, the level of Cx31.1 increased prominently both under normal growth condition and starvation-induced autophagy. Under starvation-induced autophagy, LC3-II levels were slightly accumulated with siCla. treatment compared to that of siNC, which could be ascribed to that clathrin knockdown impaired the late stage of autophagy, ALR. Taken together, we found autophagy contributed to Cx31.1 degradation, and clathrin might be involved in the autophagy of Cx31.1.
PMCID: PMC4288368  PMID: 25388970
Connexin 31.1; ubiquitin–proteasome system; starvation; autophagy; clathrin
7.  Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice 
BioMed Research International  2015;2015:730139.
Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent.
PMCID: PMC4313060
8.  Removal of the Tag from His-tagged ILYd4, a Human CD59 Inhibitor, Significantly Improves its Physical Properties and its Activity 
Current pharmaceutical design  2012;18(27):4187-4196.
Complement dependent cytotoxicity (CDC) significantly contributes to Rituximab (RTX) and Ofatumumab (OFA) efficacies in the treatment of B-cell non-Hodgkin’s lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Human CD59 (hCD59) is a key complement regulatory protein that restricts the formation of the membrane attack complex and thereby inhibits CDC. hCD59 is an important determinant of the sensitivity of NHL and CLL to RTX and OFA treatment. Recently, we developed a specific and potent hCD59 inhibitor, His-tagged ILYd4, which consists of 30 amino acid sequences extending from the N-terminus of ILYd4. Our previously published results indicate that His-tagged ILYd4 can be used as a lead candidate to further develop a potential therapeutic adjuvant for RTX and OFA treatment of RTX-resistant NHL and CLL. However, these studies were conducted using ILYd4 tagged on the N-terminus with 30 additional amino acids (AA) containing 6 X His used for immobilized metal affinity chromatograph. As a further step towards the development of ILYd4-based therapeutics, we investigated the impact of the removal of this extraneous sequence on the anti-hCD59 activity. In this paper, we report the generation and characterization of tag-free ILYd4. We demonstrate that tag-free ILYd4 has over three-fold higher anti-hCD59 activities than the His-tagged ILYd4. The enhanced RTX-mediated CDC effect on B-cell malignant cells comes from tag-free ILYd4’s improved functionality and physical properties including better solubility, reduced tendency to aggregation, and greater thermal stability. Therefore, tag-free ILYd4 is a better candidate for the further development for the clinical application.
PMCID: PMC4279449  PMID: 22642361
Rituximab; complement; CD59; intermedilysin; his-tag
9.  Genome Sequence of a Pandrug-Resistant Pseudomonas aeruginosa Strain, YN-1 
Genome Announcements  2014;2(6):e01280-14.
A highly rampant multidrug-resistant strain of Pseudomonas aeruginosa appeared in a hospital in Yunnan Province, China. Here, we report the genome sequence of the pandrug-resistant (PDR) P. aeruginosa strain recovered from a patient in 2013.
PMCID: PMC4276817  PMID: 25540339
10.  Development and Characterization of a Novel Fusion Protein of a Mutated Granulocyte Colony-Stimulating Factor and Human Serum Albumin in Pichia pastoris 
PLoS ONE  2014;9(12):e115840.
The purpose of the present work was to develop a novel, long-acting and potent human serum albumin/granulocyte colony stimulating factor (HSA/G-CSF) therapeutic fusion protein. The novel fusion protein, called HMG, was constructed by genetically fusing mutated human derived G-CSF (mG-CSF) to the C-terminal of HSA and then prepared in Pichia pastoris. The molecular mass of HMG was about 85 kDa and the isoelectric point was 5.3. Circular dichroism spectroscopy suggested that mG-CSF retained nearly all of its native secondary structure, regardless of fusion. The binding capabilities of mG-CSF moiety to G-CSF receptor and HSA moiety to warfarin showed very little change after fusing. The bioactivity of HMG (11.0×106 IU/mg) was more than twice that of rHSA/G-CSF (4.6×106 IU/mg). A mutation was made at the 718th amino acid of HMG, substituting Ala for Thr, to investigate the glycosylation of HMG expressed in P. pastoris. Data indicated that HMG was modified at Thr718, speculatively with the addition of a mannose chain. In conclusion, a novel HSA/G-CSF fusion protein was successfully constructed based on a mutated G-CSF. This protein showed more potent bioactivity than rHSA/G-CSF and thus may be a suitable long-acting G-CSF.
PMCID: PMC4275271  PMID: 25535738
11.  Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies 
Epidermal growth factor receptor (EGFR) mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC) patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R) have been developed, EGFR mutation detection by immunohistochemistry (IHC) is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC), to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS).
Materials and methods
EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas.
Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30); the specificity for both antibodies was 100.0% (26/26). IHC sensitivity was 80.0% (24/30) and the specificity was 92.31% (24/26). When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ  =0.882; P<0.01). Excellent agreement was observed between IHC and ADx-ARMS when detecting EGFR mutations (κ  =0.826; P<0.01).
QDs-IHC is a simple and standardized method to detect EGFR mutations with its high sensitivity and specificity, as compared with real-time polymerase chain reaction. In addition, the development of specific antibodies against EGFR mutation proteins might be useful for the diagnosis and treatment of lung cancer.
PMCID: PMC4266265  PMID: 25525358
quantum dots; lung cancer; EGFR; gene mutation; real-time PCR; immunohistochemistry
12.  pH-Dependent entry of chikungunya virus fusion into mosquito cells 
Virology Journal  2014;11(1):215.
Millions of human infections caused by arthropod-borne pathogens are initiated by the feeding of an infected mosquito on a vertebrate. However, interactions between the viruses and the mosquito vector, which facilitates successful infection and transmission of virus to a subsequent vertebrate host, are still not fully understood.
Here we describe early chikungunya virus (CHIKV) infectious events in cells derived from one of the most important CHIKV vectors, Aedes albopictus. We demonstrated that CHIKV infection of mosquito cells depended on acidification of the endosome as indicated by significant inhibition following prophylactic treatment with the lysosomotropic drugs chloroquine, ammonium chloride, and monensin, which is consistent with observations in mammalian cells. While all three agents inhibited CHIKV infection in C6/36 cells, ammonium chloride was less toxic to cells than the other agents.
The observation of similar mechanisms for inhibition of CHIKV infection in mosquito and mammalian cell lines suggests that conserved entry pathways are utilized by CHIKV for vertebrate and invertebrate cell types.
PMCID: PMC4266220  PMID: 25476236
Chikungunya virus; Lysosomotropic compounds; Virus entry
13.  Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in interleukin-10 deficient mice 
Molecular nutrition & food research  2013;57(12):2253-2257.
Grape seed extract (GSE) is a by-product of the wine industry, with abundant polyphenolic compounds known for their anti-inflammatory and anti-oxidative effects. Using IL10-deficient mice (IL10KO), here we showed that GSE (1% of dry feed weight) ameliorated inflammatory bowel disease (IBD) indices, increased colonic goblet cell numbers and decreased myeloperoxidase levels in the large intestine. Concomitantly, GSE supplementation attenuated inflammation, decreased the expression of pore forming tight junction protein claudin2, and increased levels of Lactobacilli and Bacteroides in the gut microbiota of IL10KO mice. In summary, our study shows that GSE has protective roles on IBD through altering gut inflammation, tight junction protein expression, and gut microbiota composition.
PMCID: PMC3976669  PMID: 23963706
inflammatory bowel disease; grape seed extract; intestine; epithelium; IL10; microbiota
14.  A Large-scale Cross-sectional Study of ALK Rearrangements and EGFR Mutations in Non-small-cell Lung Cancer in Chinese Han Population 
Scientific Reports  2014;4:7268.
The predictive power of age at diagnosis and smoking history for ALK rearrangements and EGFR mutations in non-small-cell lung cancer (NSCLC) remains not fully understood. In this cross-sectional study, 1160 NSCLC patients were prospectively enrolled and genotyped for EML4-ALK rearrangements and EGFR mutations. Multivariate logistic regression analysis was performed to explore the association between clinicopathological features and these two genetic aberrations. Receiver operating characteristic (ROC) curves methodology was applied to evaluate the predictive value. We showed that younger age at diagnosis was the only independent variable associated with EML4-ALK rearrangements (odds ratio (OR) per 5 years' increment, 0.68; p < 0.001), while lower tobacco exposure (OR per 5 pack-years' increment, 0.88; p < 0.001), adenocarcinoma (OR, 6.61; p < 0.001), and moderate to high differentiation (OR, 2.05; p < 0.001) were independently associated with EGFR mutations. Age at diagnosis was a very strong predictor of ALK rearrangements but poorly predicted EGFR mutations, while smoking pack-years may predict the presence of EGFR mutations and ALK rearrangements but with rather limited power. These findings should assist clinicians in assessing the likelihood of EML4-ALK rearrangements and EGFR mutations and understanding their biological implications in NSCLC.
PMCID: PMC4248273  PMID: 25434695
15.  EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: Implications for oncotargeted therapy 
Oncotarget  2014;5(23):12189-12202.
PD-L1 expression is a feature of Epstein-Barr virus (EBV) associated malignancies such as nasopharyngeal carcinoma (NPC). Here, we found that EBV-induced latent membrane protein 1 (LMP1) and IFN-γ pathways cooperate to regulate programmed cell death protein 1 ligand (PD-L1). Expression of PD-L1 was higher in EBV positive NPC cell lines compared with EBV negative cell lines. PD-L1 expression could be increased by exogenous and endogenous induction of LMP1 induced PD-L1. In agreement, expression of PD-L1 was suppressed by knocking down LMP1 in EBV positive cell lines. We further demonstrated that LMP1 up-regulated PD-L1 through STAT3, AP-1, and NF-κB pathways. Besides, IFN-γ was independent of but synergetic with LMP1 in up-regulating PD-L1 in NPC. Furthermore, we showed that PD-L1 was associated with worse disease-free survival in NPC patients. These results imply that blocking both the LMP1 oncogenic pathway and PD-1/PD-L1 checkpoints may be a promising therapeutic approach for EBV positive NPC patients.
PMCID: PMC4322961  PMID: 25361008
Nasopharyngeal carcinoma (NPC); latent membrane protein 1 (LMP1); PD-L1; Epstein–Barr virus (EBV)
16.  LDL receptor knock-out mice show impaired spatial cognition with hippocampal vulnerability to apoptosis and deficits in synapses 
Evidence from clinical studies support the fact that abnormal cholesterol metabolism in the brain leads to progressive cognitive dysfunction. The low-density lipoprotein receptor (LDLR) is well-known for its role in regulating cholesterol metabolism. Whether LDLR involved in this impaired cognition and the potential mechanisms that underlie this impairment are unknown.
Twelve-month-old Ldlr-/- mice (n = 10) and wild-type littermates C57BL/6 J (n = 14) were subjected to the Morris water maze test. At 1 week after completion of the behavioural testing, all of the animals were sacrificed for analysis of synaptic and apoptotic markers.
The plasma cholesterol concentration of Ldlr-/- mice was increased moderately when compared with C57BL/6 J mice (P < 0.05). Behavioural testing revealed that Ldlr-/- mice displayed impaired spatial memory, and moreover, the expression levels of synaptophysin and the number of synaptophysin-immunoreactive presynaptic boutons in the hippocampal CA1 and dentate gyrus were decreased (all P < 0.05). Ultrastructural changes in the dentate gyrus were observed using transmission electron microscopy. Furthermore, apoptosis in the hippocampus of Ldlr-/- mice was revealed based on elevation, at both the mRNA and protein levels, of the ratio of Bax/Bcl-2 expression (all P < 0.05)and an increase in activated-caspase3 protein level (P < 0.05).
LDLR deficiency contributes to impaired spatial cognition. This most likely occurs via negative effects that promote apoptosis and synaptic deficits in the hippocampus.
PMCID: PMC4258039  PMID: 25413784
LDL receptor knock-out; Cognition; Synapse; Apoptosis
17.  Levels of human replication factor C4, a clamp loader, correlate with tumor progression and predict the prognosis for colorectal cancer 
Human replication factor C4 (RFC4) is involved in DNA replication as a clamp loader and is aberrantly regulated across a range of cancers. The current study aimed to investigate the function of RFC4 in colorectal cancer (CRC).
The mRNA levels of RFC4 were assessed in 30 paired primary CRC tissues and matched normal colonic tissues by quantitative PCR. The protein expression levels of RFC4 were evaluated by western blotting (n = 16) and immunohistochemistry (IHC; n = 49), respectively. Clinicopathological features and survival data were correlated with the expression of RFC4 by IHC analysis in a tissue microarray comprising 331 surgically resected CRC. The impact of RFC4 on cell proliferation and the cell cycle was assessed using CRC cell lines.
RFC4 expression was significantly increased in CRC specimens as compared to adjacent normal colonic tissues (P <0.05). High levels of RFC4, determined on a tissue microarray, were significantly associated with differentiation, an advanced stage by the Tumor-Node-Metastasis (TNM) staging system, and a poor prognosis, as compared to low levels of expression (P <0.05). However, in multivariate analysis, RFC4 was not an independent predictor of poor survival for CRC. In vitro studies, the loss of RFC4 suppressed CRC cell proliferation and induced S-phase cell cycle arrest.
RFC4 is frequently overexpressed in CRC, and is associated with tumor progression and worse survival outcome. This might be attributed to the regulation of CRC cell proliferation and cell cycle arrest by RFC4.
Electronic supplementary material
The online version of this article (doi:10.1186/s12967-014-0320-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4256821  PMID: 25407051
Colorectal cancer; Replication factor C4; Prognosis; Cell cycle
18.  Genome Sequence of Tumebacillus flagellatus GST4, the First Genome Sequence of a Species in the Genus Tumebacillus 
Genome Announcements  2014;2(6):e01189-14.
We present here the first genome sequence of a species in the genus Tumebacillus. The draft genome sequence of Tumebacillus flagellatus GST4 provides a genetic basis for future studies addressing the origins, evolution, and ecological role of Tumebacillus organisms, as well as a source of acid-resistant amylase-encoding genes for further studies.
PMCID: PMC4241674  PMID: 25395648
19.  Predictive value of thymidylate synthase for the prognosis and survival of lung adenocarcinoma patients 
Oncology Letters  2014;9(1):252-256.
Chemotherapy represents an important treatment modality for lung adenocarcinoma. Thymidylate synthase (TS) is an essential enzyme in DNA synthesis, and its overexpression has been associated with reduced sensitivity to antifolate agents. The aim of the current study was to investigate the expression of TS and the effect on prognosis in lung adenocarcinoma patients. Adenocarcinoma and adjacent carcinoma tissues were resected from 100 patients with lung adenocarcinoma and the TS levels were detected by immunohistochemical analysis. The values for overall survival (OS) and disease-free survival (DFS) were determined using the Kaplan-Meier analysis. The results indicated that the TS protein was expressed predominantly in adenocarcinoma tissues, which exhibited higher TS expression compared with the adjacent tissues (P<0.001). The statistical analysis indicated that TS expression was associated with the clinical stage and history of smoking (P<0.05). The Kaplan-Meier analysis results indicated that the DFS and OS in patients with high TS expression levels were significantly shorter compared with those with low expression levels (P<0.05). In conclusion, the results from this study suggested that TS may serve as an independent predictive factor for survival rate, which may indicate the prognosis of lung adenocarcinoma patients.
PMCID: PMC4247065  PMID: 25435969
lung adenocarcinoma; thymidylate synthase; prognosis; survival rate
20.  Flavivirus-Mosquito Interactions 
Viruses  2014;6(11):4703-4730.
The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1–4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations.
PMCID: PMC4246245  PMID: 25421894
flavivirus; Aedes mosquito; Culex mosquito; hemorrhagic fever
21.  Therapeutic effects of globular adiponectin in diabetic rats with nonalcoholic fatty liver disease 
World Journal of Gastroenterology : WJG  2014;20(40):14950-14957.
AIM: To explore the therapeutic role of globular adiponectin (gAd) in high-fat diet/streptozotocin (STZ)-induced type 2 diabetic rats with nonalcoholic fatty liver disease (NAFLD).
METHODS: Seven rats were fed a basic diet (normal control group; NC) during the experiment. Experimental rats (14 rats) were given a high-fat diet for 4 wk and were then injected with STZ to induce type 2 diabetes mellitus (T2DM) and NAFLD. Half of the T2DM/NAFLD rats were randomly injected intraperitoneally with gAd for 7 d (gAd-treated group), while the other 7 rats (T2DM/NAFLD group) received 0.9% saline. Plasma biochemical parameters and insulin concentrations were measured. Liver histopathology was examined by hematoxylin-eosin staining. Insulin receptor expression in the liver was analyzed by immunohistochemical staining, Western blot and quantitative real-time reverse transcription polymerase chain reaction analysis.
RESULTS: Compared to the control group, the T2DM/NAFLD group had increased levels of glucolipid and decreased levels of insulin. Plasma glucose and lipid levels were decreased in the gAd-treated group, while serum insulin levels increased. The expression of insulin receptor in the T2DM/NAFLD group increased compared with the NC group, and gAd downregulated insulin receptor expression in the livers of T2DM/NAFLD rats. Steatosis of the liver was alleviated in the gAd-treated group compared to the T2DM/NAFLD group (NAS 1.39 ± 0.51 vs 1.92 ± 0.51, P < 0.05).
CONCLUSION: Globular adiponectin exerts beneficial effects in T2DM rats with NAFLD by promoting insulin secretion, mediating glucolipid metabolism, regulating insulin receptor expression and alleviating hepatic steatosis.
PMCID: PMC4209559  PMID: 25356056
Adiponectin; Insulin secretion; Insulin receptor; Steatosis
22.  The Prognostic Value of Plasma Soluble ST2 in Hospitalized Chinese Patients with Heart Failure 
PLoS ONE  2014;9(10):e110976.
sST2 has been shown to be a risk predictor in heart failure (HF). Our aim was to explore the characteristics and prognostic value of soluble ST2 (sST2) in hospitalized Chinese patients with HF.
Methods and Results
We consecutively enrolled 1528 hospitalized patients with HF. Receiver operating characteristic (ROC) and multivariable Cox proportional hazards analysis were used to assess the prognostic values of sST2. Adverse events were defined as all-cause death and cardiac transplantation. During a median follow-up of 19.1 months, 325 patients experienced adverse events. Compared with patients free of events, sST2 concentrations were significantly higher in patients with events (P<0.001). Univariable and multivariable Cox regression analyses showed sST2 concentrations were significantly associated with adverse events (per 1 log unit, adjusted hazard ratio 1.52, 95% confidence interval: 1.30 to 1.78, P<0.001). An sST2 concentration in the highest quartiles (>55.6 ng/mL) independently predicted events in comparison to the lowest quartile (≤25.2 ng/mL) when adjusted by multivariable model. In ROC analysis, the area under the curve for sST2 was not different from that for NT-proBNP in short and longer term. Over time, sST2 also improved discrimination and reclassification of risk beyond NT-proBNP.
sST2 is a strong independent risk predictor in Chinese patients hospitalized with HF and can significantly provide additional prognostic value to NT-proBNP in risk prediction.
PMCID: PMC4210209  PMID: 25347817
23.  Glycosylation, Hypogammaglobulinemia, and Resistance to Viral Infections 
The New England journal of medicine  2014;370(17):1615-1625.
Genetic defects in MOGS, the gene encoding mannosyl-oligosaccharide glucosidase (the first enzyme in the processing pathway of N-linked oligosaccharide), cause the rare congenital disorder of glycosylation type IIb (CDG-IIb), also known as MOGS-CDG. MOGS is expressed in the endoplasmic reticulum and is involved in the trimming of N-glycans. We evaluated two siblings with CDG-IIb who presented with multiple neurologic complications and a paradoxical immunologic phenotype characterized by severe hypogammaglobulinemia but limited clinical evidence of an infectious diathesis. A shortened immunoglobulin half-life was determined to be the mechanism underlying the hypogammaglobulinemia. Impaired viral replication and cellular entry may explain a decreased susceptibility to infections.
PMCID: PMC4066413  PMID: 24716661
24.  Prevalence and Molecular Characterization of Cryptosporidium in Goats across Four Provincial Level Areas in China 
PLoS ONE  2014;9(10):e111164.
This study assessed the prevalence, species and subtypes of Cryptosporidium in goats from Guangdong Province, Hubei Province, Shandong Province, and Shanghai City of China. Six hundred and four fecal samples were collected from twelve goat farms, and the overall infection rate was 11.4% (69/604). Goats infected with Cryptosporidium were found in eleven farms across four provincial areas, and the infection rate ranged from 2.9% (1/35) to 25.0% (9/36). Three Cryptosporidium species were identified. Cryptosporidium xiaoi (45/69, 65.2%) was the dominant species, followed by C. parvum (14/69, 20.3%) and C. ubiquitum (10/69, 14.5%). The infection rate of Cryptosporidium spp. was varied with host age and goat kids were more susceptible to be infected than adult goats. Subtyping C. parvum and C. ubiquitum positive samples revealed C. parvum subtype IIdA19G1 and C. ubiquitum subtype XIIa were the most common subtypes. Other C. parvum subtypes were detected as well, such as IIaA14G2R1, IIaA15G1R1, IIaA15G2R1 and IIaA17G2R1. All of these subtypes have also been detected in humans, suggesting goats may be a potential source of zoonotic cryptosporidiosis. This was the first report of C. parvum subtypes IIaA14G2R1, IIaA15G1R1 and IIaA17G2R1 infecting in goats and the first molecular identification of C. parvum and its subtypes in Chinese goats.
PMCID: PMC4208816  PMID: 25343501
25.  Multi-Targeted Antiangiogenic Tyrosine Kinase Inhibitors in Advanced Non-Small Cell Lung Cancer: Meta-Analyses of 20 Randomized Controlled Trials and Subgroup Analyses 
PLoS ONE  2014;9(10):e109757.
Multi-targeted antiangiogenic tyrosine kinase inhibitors (MATKIs) have been studied in many randomized controlled trials (RCTs) for treatment of advanced non-small cell lung cancer (NSCLC). We seek to summarize the most up-to-date evidences and perform a timely meta-analysis.
Electronic databases were searched for eligible studies. We defined the experimental arm as MATKI-containing group and the control arm as MATKI-free group. The extracted data on objective response rates (ORR), disease control rates (DCR), progression-free survival (PFS) and overall survival (OS) were pooled. Subgroup and sensitivity analyses were conducted.
Twenty phase II/III RCTs that involved a total of 10834 participants were included. Overall, MATKI-containing group was associated with significant superior ORR (OR 1.29, 95% CI 1.08 to 1.55, P = 0.006) and prolonged PFS (HR 0.83, 0.78 to 0.90, P = 0.005) compared to the MATKI-free group. However, no significant improvements in DCR (OR 1.08, 1.00 to 1.17, P = 0.054) or OS (HR 0.97, 0.93 to 1.01, P = 0.106) were observed. Subgroup analyses showed that the benefits were predominantly presented in pooled results of studies enrolling previously-treated patients, studies not limiting to enroll non-squamous NSCLC, and studies using MATKIs in combination with the control regimens as experimental therapies.
This up-to-date meta-analysis showed that MATKIs did increase ORR and prolong PFS, with no significant improvement in DCR and OS. The advantages of MATKIs were most prominent in patients who received a MATKI in combination with standard treatments and in patients who had previously experienced chemotherapy. We suggest further discussion as to the inclusion criteria of future studies on MATKIs regarding histology.
PMCID: PMC4199622  PMID: 25329056

Results 1-25 (260)