PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Telomere length in patients with systemic lupus erythematosus and its associations with carotid plaque 
Rheumatology (Oxford, England)  2013;52(6):1101-1108.
Objective. To evaluate telomere length (TL) between patients with SLE and healthy controls and to test if TL is associated with carotid plaque.
Methods. A pilot study of 154 patients with SLE and 152 controls was performed from the SOLVABLE (Study of Lupus Vascular and Bone Long-Term Endpoints) cohort. Demographic and cardiovascular disease (CVD) factors were collected at baseline. The presence or absence of plaque was evaluated by B-mode US. Genomic DNA was isolated from whole peripheral blood. TL was quantified using real-time quantitative PCR.
Results. SLE women had a short TL compared with healthy controls (4.57 vs 5.44 kb, P = 0.03). SLE women showed shorter TL than controls across all age groups: <35 years (4.38 vs 6.37 kb), 35–44 years (4.52 vs 5.30 kb), 45–54 years (4.77 vs 5.68 kb) and ≥55 years (4.60 vs 4.71 kb). Among patients with SLE and carotid plaque there was a trend towards shorter TL at a younger age and it was significantly lower in the 35- to 44-year age group when compared with controls (P = 0.025). Multiple logistic regression analysis indicated a risk of carotid plaque with older age [odds ratio (OR) 1.09; 95% CI 1.06, 1.12] but not with TL (OR 1.05; 95% CI 0.97, 1.13).
Conclusion. SLE women had significantly shorter TL than controls. SLE women trended towards shorter TL at a younger age. When carotid plaque was identified, the younger SLE women had shorter TL. Only older age but not shorter TL was independently associated with carotid plaque. Additional studies are needed to confirm if TL is a novel biomarker for cardiovascular disease in SLE.
doi:10.1093/rheumatology/kes424
PMCID: PMC3651615  PMID: 23382361
systemic lupus erythematosus; cardiovascular disease; telomere length
2.  TH-17 cells in rheumatoid arthritis 
Introduction
The aim of this study was to quantify the number of T-helper (TH)-17 cells present in rheumatoid arthritis (RA) synovial fluid (SF) and to determine the level of interleukin (IL)-17 cytokine in RA, osteoarthritis (OA) and normal synovial tissue, as well as to examine SF macrophages for the presence of IL-23, IL-27 and interferon (IFN)-γ.
Methods
Peripheral blood (PB) mononuclear cells from normal and RA donors and mononuclear cells from RA SF were examined either without stimulation or after pretreatment with IL-23 followed by stimulation with phorbol myristate acetate (PMA) plus ionomycin (P/I). The abundance of TH-17 cells in RA SF was determined by flow cytometry. IL-17 levels were quantified in synovial tissue from RA, OA and normal individuals by ELISA and IL-23 was identified in SFs by ELISA. RA SF and control in vitro differentiated macrophages were either untreated or treated with the toll-like receptor (TLR) 2 ligand peptidoglycan, and then IL-23, IL-27 and IFN-γ mRNA levels were quantified by real-time polymerase chain reaction (RT-PCR).
Results
Treatment with P/I alone or combined with IL-23 significantly increased the number of TH-17 cells in normal, RA PB and RA SF. With or without P/I plus IL-23, the percentage of TH-17 cells was higher in RA SF compared with normal and RA PB. IL-17 levels were comparable in OA and normal synovial tissues, and these values were significantly increased in RA synovial tissue. Although IL-17 was readily detected in RA SFs, IL-23 was rarely identified in RA SF. However, IL-23 mRNA was significantly increased in RA SF macrophages compared with control macrophages, with or without TLR2 ligation. IL-27 mRNA was also significantly higher in RA SF compared with control macrophages, but there was no difference in IL-27 levels between RA and control macrophages after TLR2 ligation. IFN-γ mRNA was also detectable in RA SF macrophages but not control macrophages and the increase of IFN-γ mRNA following TLR2 ligation was greater in RA SF macrophages compared with control macrophages.
Conclusion
These observations support a role for TH-17 cells in RA. Our observations do not strongly support a role for IL-23 in the generation of TH-17 cells in the RA joint, however, they suggest strategies that enhance IL-27 or IFN-γ might modulate the presence of TH-17 cells in RA.
doi:10.1186/ar2477
PMCID: PMC2575607  PMID: 18710567
3.  IL-17-mediated monocyte migration occurs partially through CCL2/MCP-1 induction1 
Rheumatoid arthritis (RA) is a chronic inflammatory disease which is in part mediated by proinflammatory factors produced by RA synovial tissue fibroblasts and macrophages, resulting in monocyte migration from the blood to the synovial tissue. In order to characterize the potential role of IL-17 in monocyte migration, RA synovial fibroblasts and macrophages were activated with IL-17 and examined for the expression of monocyte chemokines. The two potentially important monocyte chemoattractants identified were CCL20/MIP-3α and CCL2/MCP-1, which were significantly induced in RA synovial fibroblasts and macrophages. However, in vivo, only CCL2/MCP-1 was detectable following adenovirus (Ad)-IL-17 injection. We found that IL-17 induction of CCL2/MCP-1 was mediated by PI3K, ERK, and JNK pathways in RA synovial tissue fibroblasts and PI3K and ERK pathways in macrophages. Further, we show that neutralization of CCL2/MCP-1 significantly reduced IL-17-mediated monocyte recruitment into the peritoneal cavity. We demonstrate that local expression of IL-17 in ankle joints was associated with significantly increased monocyte migration and CCL2/MCP-1 levels. Interestingly, we show that RA synovial fluids immunoneutralized for both IL-17 and CCL2/MCP-1 have similar monocyte chemotaxis activity as those immunoneutralized for each factor alone. In short, CCL2/MCP-1 produced from cell types present in the RA joint as well as in experimental arthritis may be in part responsible for IL-17-induced monocyte migration, hence these results suggest that CCL2/MCP-1 is a downstream target of IL-17 that may be important in RA.
doi:10.4049/jimmunol.0901942
PMCID: PMC2858914  PMID: 20228199
IL-17; CCL2/MCP-1; macrophages; synovial tissue fibroblasts; monocytes; rheumatoid arthritis
4.  Inhibition of ADP/ATP Exchange in Receptor-Interacting Protein-Mediated Necrosis†  
Molecular and Cellular Biology  2006;26(6):2215-2225.
Receptor-interacting protein (RIP) has been implicated in the induction of death receptor-mediated, nonapoptotic cell death. However, the mechanisms remain to be elucidated. Here we show that tumor necrosis factor alpha induced RIP-dependent inhibition of adenine nucleotide translocase (ANT)-conducted transport of ADP into mitochondria, which resulted in reduced ATP and necrotic cell death. The inhibition of ADP/ATP exchange coincided with the loss of interaction between ANT and cyclophilin D and the inability of ANT to adopt the cytosolic conformational state, which prevented cytochrome c release. Neither overexpression of Bcl-xL nor inhibition of reactive oxygen species prevented necrosis. In contrast, the ectopic expression of ANT or cyclophilin D was effective at preventing cell death. These observations demonstrate a novel mechanism initiated through death receptor ligation and mediated by RIP that results in the suppression of ANT activity and necrosis.
doi:10.1128/MCB.26.6.2215-2225.2006
PMCID: PMC1430284  PMID: 16507998

Results 1-4 (4)