Search tips
Search criteria

Results 1-25 (28)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
2.  Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent 
The ISME Journal  2013;7(9):1827-1841.
Viruses that infect marine cyanobacteria–cyanophages–often carry genes with orthologs in their cyanobacterial hosts, and the frequency of these genes can vary with habitat. To explore habitat-influenced genomic diversity more deeply, we used the genomes of 28 cultured cyanomyoviruses as references to identify phage genes in three ocean habitats. Only about 6–11% of genes were consistently observed in the wild, revealing high gene-content variability in these populations. Numerous shared phage/host genes differed in relative frequency between environments, including genes related to phosphorous acquisition, photorespiration, photosynthesis and the pentose phosphate pathway, possibly reflecting environmental selection for these genes in cyanomyovirus genomes. The strongest emergent signal was related to phosphorous availability; a higher fraction of genomes from relatively low-phosphorus environments–the Sargasso and Mediterranean Sea–contained host-like phosphorus assimilation genes compared with those from the N. Pacific Gyre. These genes are known to be upregulated when the host is phosphorous starved, a response mediated by pho box motifs in phage genomes that bind a host regulatory protein. Eleven cyanomyoviruses have predicted pho boxes upstream of the phosphate-acquisition genes pstS and phoA; eight of these have a conserved cyanophage-specific gene (PhCOG173) between the pho box and pstS. PhCOG173 is also found upstream of other shared phage/host genes, suggesting a unique regulatory role. Pho boxes are found upstream of high light-inducible (hli) genes in cyanomyoviruses, suggesting that this motif may have a broader role than regulating phosphorous-stress responses in infected hosts or that these hlis are involved in the phosphorous-stress response.
PMCID: PMC3749497  PMID: 23657361
cyanophage; cyanobacteria; phosphate; selective pressure
3.  Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis 
The ISME Journal  2012;7(1):184-198.
Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world's oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome—that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome.
PMCID: PMC3526172  PMID: 22895163
HNLC; Prochlorococcus; siderophore
4.  MetaRef: a pan-genomic database for comparative and community microbial genomics 
Nucleic Acids Research  2013;42(Database issue):D617-D624.
Microbial genome sequencing is one of the longest-standing areas of biological database development, but high-throughput, low-cost technologies have increased its throughput to an unprecedented number of new genomes per year. Several thousand microbial genomes are now available, necessitating new approaches to organizing information on gene function, phylogeny and microbial taxonomy to facilitate downstream biological interpretation. MetaRef, available at, is a novel online resource systematically cataloguing a comprehensive pan-genome of all microbial clades with sequenced isolates. It organizes currently available draft and finished bacterial and archaeal genomes into quality-controlled clades, reports all core and pan gene families at multiple levels in the resulting taxonomy, and it annotates families’ conservation, phylogeny and consensus functional information. MetaRef also provides a comprehensive non-redundant reference gene catalogue for metagenomic studies, including the abundance and prevalence of all gene families in the >700 shotgun metagenomic samples of the Human Microbiome Project. This constitutes a systematic mapping of clade-specific microbial functions within the healthy human microbiome across multiple body sites and can be used as reference for identifying potential functional biomarkers in disease-associate microbiomes. MetaRef provides all information both as an online browsable resource and as downloadable sequences and tabular data files that can be used for subsequent offline studies.
PMCID: PMC3964974  PMID: 24203705
5.  A framework for human microbiome research 
Methé, Barbara A. | Nelson, Karen E. | Pop, Mihai | Creasy, Heather H. | Giglio, Michelle G. | Huttenhower, Curtis | Gevers, Dirk | Petrosino, Joseph F. | Abubucker, Sahar | Badger, Jonathan H. | Chinwalla, Asif T. | Earl, Ashlee M. | FitzGerald, Michael G. | Fulton, Robert S. | Hallsworth-Pepin, Kymberlie | Lobos, Elizabeth A. | Madupu, Ramana | Magrini, Vincent | Martin, John C. | Mitreva, Makedonka | Muzny, Donna M. | Sodergren, Erica J. | Versalovic, James | Wollam, Aye M. | Worley, Kim C. | Wortman, Jennifer R. | Young, Sarah K. | Zeng, Qiandong | Aagaard, Kjersti M. | Abolude, Olukemi O. | Allen-Vercoe, Emma | Alm, Eric J. | Alvarado, Lucia | Andersen, Gary L. | Anderson, Scott | Appelbaum, Elizabeth | Arachchi, Harindra M. | Armitage, Gary | Arze, Cesar A. | Ayvaz, Tulin | Baker, Carl C. | Begg, Lisa | Belachew, Tsegahiwot | Bhonagiri, Veena | Bihan, Monika | Blaser, Martin J. | Bloom, Toby | Vivien Bonazzi, J. | Brooks, Paul | Buck, Gregory A. | Buhay, Christian J. | Busam, Dana A. | Campbell, Joseph L. | Canon, Shane R. | Cantarel, Brandi L. | Chain, Patrick S. | Chen, I-Min A. | Chen, Lei | Chhibba, Shaila | Chu, Ken | Ciulla, Dawn M. | Clemente, Jose C. | Clifton, Sandra W. | Conlan, Sean | Crabtree, Jonathan | Cutting, Mary A. | Davidovics, Noam J. | Davis, Catherine C. | DeSantis, Todd Z. | Deal, Carolyn | Delehaunty, Kimberley D. | Dewhirst, Floyd E. | Deych, Elena | Ding, Yan | Dooling, David J. | Dugan, Shannon P. | Dunne, Wm. Michael | Durkin, A. Scott | Edgar, Robert C. | Erlich, Rachel L. | Farmer, Candace N. | Farrell, Ruth M. | Faust, Karoline | Feldgarden, Michael | Felix, Victor M. | Fisher, Sheila | Fodor, Anthony A. | Forney, Larry | Foster, Leslie | Di Francesco, Valentina | Friedman, Jonathan | Friedrich, Dennis C. | Fronick, Catrina C. | Fulton, Lucinda L. | Gao, Hongyu | Garcia, Nathalia | Giannoukos, Georgia | Giblin, Christina | Giovanni, Maria Y. | Goldberg, Jonathan M. | Goll, Johannes | Gonzalez, Antonio | Griggs, Allison | Gujja, Sharvari | Haas, Brian J. | Hamilton, Holli A. | Harris, Emily L. | Hepburn, Theresa A. | Herter, Brandi | Hoffmann, Diane E. | Holder, Michael E. | Howarth, Clinton | Huang, Katherine H. | Huse, Susan M. | Izard, Jacques | Jansson, Janet K. | Jiang, Huaiyang | Jordan, Catherine | Joshi, Vandita | Katancik, James A. | Keitel, Wendy A. | Kelley, Scott T. | Kells, Cristyn | Kinder-Haake, Susan | King, Nicholas B. | Knight, Rob | Knights, Dan | Kong, Heidi H. | Koren, Omry | Koren, Sergey | Kota, Karthik C. | Kovar, Christie L. | Kyrpides, Nikos C. | La Rosa, Patricio S. | Lee, Sandra L. | Lemon, Katherine P. | Lennon, Niall | Lewis, Cecil M. | Lewis, Lora | Ley, Ruth E. | Li, Kelvin | Liolios, Konstantinos | Liu, Bo | Liu, Yue | Lo, Chien-Chi | Lozupone, Catherine A. | Lunsford, R. Dwayne | Madden, Tessa | Mahurkar, Anup A. | Mannon, Peter J. | Mardis, Elaine R. | Markowitz, Victor M. | Mavrommatis, Konstantinos | McCorrison, Jamison M. | McDonald, Daniel | McEwen, Jean | McGuire, Amy L. | McInnes, Pamela | Mehta, Teena | Mihindukulasuriya, Kathie A. | Miller, Jason R. | Minx, Patrick J. | Newsham, Irene | Nusbaum, Chad | O’Laughlin, Michelle | Orvis, Joshua | Pagani, Ioanna | Palaniappan, Krishna | Patel, Shital M. | Pearson, Matthew | Peterson, Jane | Podar, Mircea | Pohl, Craig | Pollard, Katherine S. | Priest, Margaret E. | Proctor, Lita M. | Qin, Xiang | Raes, Jeroen | Ravel, Jacques | Reid, Jeffrey G. | Rho, Mina | Rhodes, Rosamond | Riehle, Kevin P. | Rivera, Maria C. | Rodriguez-Mueller, Beltran | Rogers, Yu-Hui | Ross, Matthew C. | Russ, Carsten | Sanka, Ravi K. | Pamela Sankar, J. | Sathirapongsasuti, Fah | Schloss, Jeffery A. | Schloss, Patrick D. | Schmidt, Thomas M. | Scholz, Matthew | Schriml, Lynn | Schubert, Alyxandria M. | Segata, Nicola | Segre, Julia A. | Shannon, William D. | Sharp, Richard R. | Sharpton, Thomas J. | Shenoy, Narmada | Sheth, Nihar U. | Simone, Gina A. | Singh, Indresh | Smillie, Chris S. | Sobel, Jack D. | Sommer, Daniel D. | Spicer, Paul | Sutton, Granger G. | Sykes, Sean M. | Tabbaa, Diana G. | Thiagarajan, Mathangi | Tomlinson, Chad M. | Torralba, Manolito | Treangen, Todd J. | Truty, Rebecca M. | Vishnivetskaya, Tatiana A. | Walker, Jason | Wang, Lu | Wang, Zhengyuan | Ward, Doyle V. | Warren, Wesley | Watson, Mark A. | Wellington, Christopher | Wetterstrand, Kris A. | White, James R. | Wilczek-Boney, Katarzyna | Wu, Yuan Qing | Wylie, Kristine M. | Wylie, Todd | Yandava, Chandri | Ye, Liang | Ye, Yuzhen | Yooseph, Shibu | Youmans, Bonnie P. | Zhang, Lan | Zhou, Yanjiao | Zhu, Yiming | Zoloth, Laurie | Zucker, Jeremy D. | Birren, Bruce W. | Gibbs, Richard A. | Highlander, Sarah K. | Weinstock, George M. | Wilson, Richard K. | White, Owen
Nature  2012;486(7402):215-221.
A variety of microbial communities and their genes (microbiome) exist throughout the human body, playing fundamental roles in human health and disease. The NIH funded Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 to 18 body sites up to three times, which to date, have generated 5,177 microbial taxonomic profiles from 16S rRNA genes and over 3.5 Tb of metagenomic sequence. In parallel, approximately 800 human-associated reference genomes have been sequenced. Collectively, these data represent the largest resource to date describing the abundance and variety of the human microbiome, while providing a platform for current and future studies.
PMCID: PMC3377744  PMID: 22699610
6.  IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction 
Nature medicine  2012;18(4):547-554.
Emerging evidence suggests that the TH17 subset of αβ T cells contributes to the development of allergic asthma. In this study we found that mice lacking αvβ8 on dendritic cells failed to generate TH17 cells in the lung and were protected from AHR in response to house dust mite and ovalbumin sensitization and challenge. Because loss of TH17 cells inhibited airway narrowing without obvious effects on airway inflammation or epithelial morphology, we examined the direct effects of TH17 cytokines on mouse and human airway smooth muscle function. IL-17A enhanced contractile force generation through a NF-κB/RhoA/ROCK2 signaling cascade. Mice lacking integrin αvβ8 on dendritic cells showed impaired activation of this pathway after OVA sensitization and challenge, and the diminished contraction of tracheal rings from these mice was reversed by IL-17A. These data indicate that IL-17A produced by TH17 cells contributes to allergen-induced AHR through direct effects on airway smooth muscle.
PMCID: PMC3321096  PMID: 22388091
7.  Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability 
The ISME Journal  2011;5(10):1580-1594.
Prochlorococcus contributes significantly to ocean primary productivity. The link between primary productivity and iron in specific ocean regions is well established and iron limitation of Prochlorococcus cell division rates in these regions has been shown. However, the extent of ecotypic variation in iron metabolism among Prochlorococcus and the molecular basis for differences is not understood. Here, we examine the growth and transcriptional response of Prochlorococcus strains, MED4 and MIT9313, to changing iron concentrations. During steady state, MIT9313 sustains growth at an order-of-magnitude lower iron concentration than MED4. To explore this difference, we measured the whole-genome transcriptional response of each strain to abrupt iron starvation and rescue. Only four of the 1159 orthologs of MED4 and MIT9313 were differentially expressed in response to iron in both strains. However, in each strain, the expression of over a hundred additional genes changed, many of which are in labile genomic regions, suggesting a role for lateral gene transfer in establishing diversity of iron metabolism among Prochlorococcus. Furthermore, we found that MED4 lacks three genes near the iron-deficiency-induced gene (idiA) that are present and induced by iron stress in MIT9313. These genes are interesting targets for studying the adaptation of natural Prochlorococcus assemblages to local iron conditions as they show more diversity than other genomic regions in environmental metagenomic databases.
PMCID: PMC3176520  PMID: 21562599
cyanobacteria; iron; transcriptome
8.  The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome 
PLoS Biology  2012;10(8):e1001377.
This manuscript describes the NIH Human Microbiome Project, including a brief review of human microbiome research, a history of the project, and a comprehensive overview of the consortium's recent collection of publications analyzing the human microbiome.
PMCID: PMC3419203  PMID: 22904687
9.  Long-term stable canine mandibular augmentation using autologous bone marrow stromal cells and hydroxyapatite/tricalcium phosphate 
Biomaterials  2008;29(31):4211-4216.
Transplants of culture-expanded bone marrow stromal cells (BMSCs) combined with hydroxy-apatite tricalcium phosphate (HA/TCP) scaffolds successfully form cortico-cancellous bone to reconstruct the dog craniofacial skeleton. Yet, these transplants’ long-term stability in large animal models has not been evaluated. Theis study’s purpose was the evaluation of long-term BMSC transplant stability when used to augment the mandible. Here, autologous BMSC-HA/TCP transplants were introduced onto the unilateral dog mandible as onlay grafts, while contralateral control mandibles received HA/TCP onlays alone. Quantitative CT (qCT) scans were obtained both early and late after transplantation. Transplants were harvested up to 19 months later for histologic and mechanical analyses. In all dogs, BMSC transplants formed significantly greater amounts of bone over their control counterparts. The new bone formed an extensive union with the underlying mandible. BMSC transplants retained the majority of their initial volume, while control (HA/TCP only) transplants were nearly completely resorbed. By qCT, the extent of newly formed bone could be determined non-invasively. In summary, HA/TCP particles alone undergo a high degree of resorption, while autologous cultured BMSC- HA/TCP transplants provide long-term bony augmentation of the mandible.
PMCID: PMC3383855  PMID: 18687465
AFM; Autologous cell; Bone tissue engineering; Hydroxyapatite composite; Stem cell; Transplantation
10.  Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes 
Genome Biology  2012;13(3):r23.
We have developed a process for transcriptome analysis of bacterial communities that accommodates both intact and fragmented starting RNA and combines efficient rRNA removal with strand-specific RNA-seq. We applied this approach to an RNA mixture derived from three diverse cultured bacterial species and to RNA isolated from clinical stool samples. The resulting expression profiles were highly reproducible, enriched up to 40-fold for non-rRNA transcripts, and correlated well with profiles representing undepleted total RNA.
PMCID: PMC3439974  PMID: 22455878
11.  The αvβ6 integrin modulates airway hyperresponsiveness in mice by regulating intraepithelial mast cells 
Allergic asthma is the most common form of asthma, affecting more than 10 million Americans. Although it is clear that mast cells have a key role in the pathogenesis of allergic asthma, the mechanisms by which they regulate airway narrowing in vivo remain to be elucidated. Here we report that mice lacking αvβ6 integrin are protected from exaggerated airway narrowing in a model of allergic asthma. Expression microarrays of the airway epithelium revealed mast cell proteases among the most prominent differentially expressed genes, with expression of mouse mast cell protease 1 (mMCP-1) induced by allergen challenge in WT mice and expression of mMCP-4, -5, and -6 increased at baseline in β6-deficient mice. These findings were most likely explained by loss of TGF-β activation, since the epithelial integrin αvβ6 is a critical activator of latent TGF-β, and in vitro–differentiated mast cells showed TGF-β–dependent expression of mMCP-1 and suppression of mMCP-4 and -6. In vitro, mMCP-1 increased contractility of murine tracheal rings, an effect that depended on intact airway epithelium, whereas mMCP-4 inhibited IL-13–induced epithelial-independent enhancement of contractility. These results suggest that intraepithelial activation of TGF-β by the αvβ6 integrin regulates airway responsiveness by modulating mast cell protease expression and that these proteases and their proteolytic substrates could be novel targets for improved treatment of allergic asthma.
PMCID: PMC3266785  PMID: 22232213
12.  ProPortal: a resource for integrated systems biology of Prochlorococcus and its phage 
Nucleic Acids Research  2011;40(Database issue):D632-D640.
ProPortal ( is a database containing genomic, metagenomic, transcriptomic and field data for the marine cyanobacterium Prochlorococcus. Our goal is to provide a source of cross-referenced data across multiple scales of biological organization—from the genome to the ecosystem—embracing the full diversity of ecotypic variation within this microbial taxon, its sister group, Synechococcus and phage that infect them. The site currently contains the genomes of 13 Prochlorococcus strains, 11 Synechococcus strains and 28 cyanophage strains that infect one or both groups. Cyanobacterial and cyanophage genes are clustered into orthologous groups that can be accessed by keyword search or through a genome browser. Users can also identify orthologous gene clusters shared by cyanobacterial and cyanophage genomes. Gene expression data for Prochlorococcus ecotypes MED4 and MIT9313 allow users to identify genes that are up or downregulated in response to environmental stressors. In addition, the transcriptome in synchronized cells grown on a 24-h light–dark cycle reveals the choreography of gene expression in cells in a ‘natural’ state. Metagenomic sequences from the Global Ocean Survey from Prochlorococcus, Synechococcus and phage genomes are archived so users can examine the differences between populations from diverse habitats. Finally, an example of cyanobacterial population data from the field is included.
PMCID: PMC3245167  PMID: 22102570
13.  PHLPP-1 Negatively Regulates Akt Activity and Survival in the Heart 
Circulation research  2010;107(4):476-484.
The recently discovered PHLPP-1 (PH domain leucine-rich repeat protein phosphatase-1) selectively dephosphorylates Akt at Ser473 and terminates Akt signaling in cancer cells. The regulatory role of PHLPP-1 in the heart has not been considered.
To test the hypothesis that blockade/inhibition of PHLPP-1 could constitute a novel way to enhance Akt signals and provide cardioprotection.
Methods and Results
PHLPP-1 is expressed in neonatal rat ventricular myocytes (NRVMs) and in adult mouse ventricular myocytes (AMVMs). PHLPP-1 knockdown by small interfering RNA significantly enhances phosphorylation of Akt (p-Akt) at Ser473, but not at Thr308, in NRVMs stimulated with leukemia inhibitory factor (LIF). The increased phosphorylation is accompanied by greater Akt catalytic activity. PHLPP-1 knockdown enhances LIF-mediated cardioprotection against doxorubicin and also protects cardiomyocytes against H2O2. Direct Akt effects at mitochondria have been implicated in cardioprotection and mitochondria/cytosol fractionation revealed a significant enrichment of PHLPP-1 at mitochondria. The ability of PHLPP-1 knockdown to potentiate LIF-mediated increases in p-Akt at mitochondria and an accompanying increase in mitochondrial hexokinase-II was demonstrated. We generated PHLPP-1 knockout (KO) mice and demonstrate that AMVMs isolated from KO mice show potentiated p-Akt at Ser473 in response to agonists. When isolated perfused hearts are subjected to ischemia/reperfusion, p-Akt in whole-heart homogenates and in the mitochondrial fraction is significantly increased. Additionally in PHLPP-1 KO hearts, the increase in p-Akt elicited by ischemia/reperfusion is potentiated and, concomitantly, infarct size is significantly reduced.
These results implicate PHLPP-1 as an endogenous negative regulator of Akt activity and cell survival in the heart.
PMCID: PMC2957297  PMID: 20576936
Akt; PHLPP; phosphatase; heart; protection
15.  Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation ▿ †  
The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels.
PMCID: PMC2832388  PMID: 20038696
16.  MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice 
The Journal of Clinical Investigation  2010;120(8):2805-2816.
Mechanistic target of rapamycin (MTOR) plays a critical role in the regulation of cell growth and in the response to energy state changes. Drugs inhibiting MTOR are increasingly used in antineoplastic therapies. Myocardial MTOR activity changes during hypertrophy and heart failure (HF). However, whether MTOR exerts a positive or a negative effect on myocardial function remains to be fully elucidated. Here, we show that ablation of Mtor in the adult mouse myocardium results in a fatal, dilated cardiomyopathy that is characterized by apoptosis, autophagy, altered mitochondrial structure, and accumulation of eukaryotic translation initiation factor 4E–binding protein 1 (4E-BP1). 4E-BP1 is an MTOR-containing multiprotein complex-1 (MTORC1) substrate that inhibits translation initiation. When subjected to pressure overload, Mtor-ablated mice demonstrated an impaired hypertrophic response and accelerated HF progression. When the gene encoding 4E-BP1 was ablated together with Mtor, marked improvements were observed in apoptosis, heart function, and survival. Our results demonstrate a role for the MTORC1 signaling network in the myocardial response to stress. In particular, they highlight the role of 4E-BP1 in regulating cardiomyocyte viability and in HF. Because the effects of reduced MTOR activity were mediated through increased 4E-BP1 inhibitory activity, blunting this mechanism may represent a novel therapeutic strategy for improving cardiac function in clinical HF.
PMCID: PMC2912201  PMID: 20644257
17.  MicrobesOnline: an integrated portal for comparative and functional genomics 
Nucleic Acids Research  2009;38(Database issue):D396-D400.
Since 2003, MicrobesOnline ( has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at
PMCID: PMC2808868  PMID: 19906701
18.  Response of Desulfovibrio vulgaris to Alkaline Stress▿ †  
Journal of Bacteriology  2007;189(24):8944-8952.
The response of exponentially growing Desulfovibrio vulgaris Hildenborough to pH 10 stress was studied using oligonucleotide microarrays and a study set of mutants with genes suggested by microarray data to be involved in the alkaline stress response deleted. The data showed that the response of D. vulgaris to increased pH is generally similar to that of Escherichia coli but is apparently controlled by unique regulatory circuits since the alternative sigma factors (sigma S and sigma E) contributing to this stress response in E. coli appear to be absent in D. vulgaris. Genes previously reported to be up-regulated in E. coli were up-regulated in D. vulgaris; these genes included three ATPase genes and a tryptophan synthase gene. Transcription of chaperone and protease genes (encoding ATP-dependent Clp and La proteases and DnaK) was also elevated in D. vulgaris. As in E. coli, genes involved in flagellum synthesis were down-regulated. The transcriptional data also identified regulators, distinct from sigma S and sigma E, that are likely part of a D. vulgaris Hildenborough-specific stress response system. Characterization of a study set of mutants with genes implicated in alkaline stress response deleted confirmed that there was protective involvement of the sodium/proton antiporter NhaC-2, tryptophanase A, and two putative regulators/histidine kinases (DVU0331 and DVU2580).
PMCID: PMC2168612  PMID: 17921288
19.  Analysis of a Ferric Uptake Regulator (Fur) Mutant of Desulfovibrio vulgaris Hildenborough▿  
Applied and Environmental Microbiology  2007;73(17):5389-5400.
Previous experiments examining the transcriptional profile of the anaerobe Desulfovibrio vulgaris demonstrated up-regulation of the Fur regulon in response to various environmental stressors. To test the involvement of Fur in the growth response and transcriptional regulation of D. vulgaris, a targeted mutagenesis procedure was used for deleting the fur gene. Growth of the resulting Δfur mutant (JW707) was not affected by iron availability, but the mutant did exhibit increased sensitivity to nitrite and osmotic stresses compared to the wild type. Transcriptional profiling of JW707 indicated that iron-bound Fur acts as a traditional repressor for ferrous iron uptake genes (feoAB) and other genes containing a predicted Fur binding site within their promoter. Despite the apparent lack of siderophore biosynthesis genes within the D. vulgaris genome, a large 12-gene operon encoding orthologs to TonB and TolQR also appeared to be repressed by iron-bound Fur. While other genes predicted to be involved in iron homeostasis were unaffected by the presence or absence of Fur, alternative expression patterns that could be interpreted as repression or activation by iron-free Fur were observed. Both the physiological and transcriptional data implicate a global regulatory role for Fur in the sulfate-reducing bacterium D. vulgaris.
PMCID: PMC2042090  PMID: 17630305
20.  Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus 
PLoS Genetics  2007;3(12):e231.
Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus, reconstruction of past gene gains and losses shows that much of the variability exists at the “leaves of the tree,” between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the wild.
Author Summary
Prochlorococcus—the most abundant photosynthetic microbe living in the vast, nutrient-poor areas of the ocean—is a major contributor to the global carbon cycle. Prochlorococcus is composed of closely related, physiologically distinct lineages whose differences enable the group as a whole to proliferate over a broad range of environmental conditions. We compare the genomes of 12 strains of Prochlorococcus representing its major lineages in order to identify genetic differences affecting the ecology of different lineages and their evolutionary origin. First, we identify the core genome: the 1,273 genes shared among all strains. This core set of genes encodes the essentials of a functional cell, enabling it to make living matter out of sunlight and carbon dioxide. We then create a genomic tree that maps the gain and loss of non-core genes in individual strains, showing that a striking number of genes are gained or lost even among the most closely related strains. We find that lost and gained genes commonly cluster in highly variable regions called genomic islands. The level of diversity among the non-core genes, and the number of new genes added with each new genome sequenced, suggest far more diversity to be discovered.
PMCID: PMC2151091  PMID: 18159947
21.  The Evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation 
PLoS Computational Biology  2006;2(11):e143.
Two-component systems including histidine protein kinases represent the primary signal transduction paradigm in prokaryotic organisms. To understand how these systems adapt to allow organisms to detect niche-specific signals, we analyzed the phylogenetic distribution of nearly 5,000 histidine protein kinases from 207 sequenced prokaryotic genomes. We found that many genomes carry a large repertoire of recently evolved signaling genes, which may reflect selective pressure to adapt to new environmental conditions. Both lineage-specific gene family expansion and horizontal gene transfer play major roles in the introduction of new histidine kinases into genomes; however, there are differences in how these two evolutionary forces act. Genes imported via horizontal transfer are more likely to retain their original functionality as inferred from a similar complement of signaling domains, while gene family expansion accompanied by domain shuffling appears to be a major source of novel genetic diversity. Family expansion is the dominant source of new histidine kinase genes in the genomes most enriched in signaling proteins, and detailed analysis reveals that divergence in domain structure and changes in expression patterns are hallmarks of recent expansions. Finally, while these two modes of gene acquisition are widespread across bacterial taxa, there are clear species-specific preferences for which mode is used.
Pathways containing histidine protein kinases (HPKs) represent a key mechanism for signal transduction, especially in bacteria. These systems help cells to sense and respond to their environment by detecting external cues and effecting internal responses such as changes in gene expression. As such, they are believed to play a key role in niche adaptation, yet their evolution is difficult to study due to the large number of paralogous subfamilies. This work extends previous large-scale gene evolution studies by considering complex paralogy relationships, and uncovers an abundance of horizontal transfers, gene duplications, and domain shuffling that have marked the evolutionary history of HPKs. An important finding of this study is qualitative differences between the main strategies for acquiring new HPKs (horizontal gene transfer and gene duplication). Hallmarks of the latter process include domain shuffling and the generation of “orphan” HPKs not co-transcribed with a cognate response regulator.
PMCID: PMC1630713  PMID: 17083272
22.  Salt Stress in Desulfovibrio vulgaris Hildenborough: an Integrated Genomics Approach 
Journal of Bacteriology  2006;188(11):4068-4078.
The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms.
PMCID: PMC1482918  PMID: 16707698
23.  Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis†  
Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response.
PMCID: PMC1489655  PMID: 16751553
24.  Transcriptome Profiling of Shewanella oneidensis Gene Expression following Exposure to Acidic and Alkaline pH†  
Journal of Bacteriology  2006;188(4):1633-1642.
The molecular response of Shewanella oneidensis MR-1 to variations in extracellular pH was investigated based on genomewide gene expression profiling. Microarray analysis revealed that cells elicited both general and specific transcriptome responses when challenged with environmental acid (pH 4) or base (pH 10) conditions over a 60-min period. Global responses included the differential expression of genes functionally linked to amino acid metabolism, transcriptional regulation and signal transduction, transport, cell membrane structure, and oxidative stress protection. Response to acid stress included the elevated expression of genes encoding glycogen biosynthetic enzymes, phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS), whereas the molecular response to alkaline pH was characterized by upregulation of nhaA and nhaR, which are predicted to encode an Na+/H+ antiporter and transcriptional activator, respectively, as well as sulfate transport and sulfur metabolism genes. Collectively, these results suggest that S. oneidensis modulates multiple transporters, cell envelope components, and pathways of amino acid consumption and central intermediary metabolism as part of its transcriptome response to changing external pH conditions.
PMCID: PMC1367224  PMID: 16452448
25.  Cellular Response of Shewanella oneidensis to Strontium Stress†  
The physiology and transcriptome dynamics of the metal ion-reducing bacterium Shewanella oneidensis strain MR-1 in response to nonradioactive strontium (Sr) exposure were investigated. Studies indicated that MR-1 was able to grow aerobically in complex medium in the presence of 180 mM SrCl2 but showed severe growth inhibition at levels above that concentration. Temporal gene expression profiles were generated from aerobically grown, mid-exponential-phase MR-1 cells shocked with 180 mM SrCl2 and analyzed for significant differences in mRNA abundance with reference to data for nonstressed MR-1 cells. Genes with annotated functions in siderophore biosynthesis and iron transport were among the most highly induced (>100-fold [P < 0.05]) open reading frames in response to acute Sr stress, and a mutant (SO3032::pKNOCK) defective in siderophore production was found to be hypersensitive to SrCl2 exposure, compared to parental and wild-type strains. Transcripts encoding multidrug and heavy metal efflux pumps, proteins involved in osmotic adaptation, sulfate ABC transporters, and assimilative sulfur metabolism enzymes also were differentially expressed following Sr exposure but at levels that were several orders of magnitude lower than those for iron transport genes. Precipitate formation was observed during aerobic growth of MR-1 in broth cultures amended with 50, 100, or 150 mM SrCl2 but not in cultures of the SO3032::pKNOCK mutant or in the abiotic control. Chemical analysis of this precipitate using laser-induced breakdown spectroscopy and static secondary ion mass spectrometry indicated extracellular solid-phase sequestration of Sr, with at least a portion of the heavy metal associated with carbonate phases.
PMCID: PMC1352239  PMID: 16391131

Results 1-25 (28)