PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (293)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation 
Scientific Reports  2015;5:8293.
WD repeat domain 5 (WDR5) plays an important role in various biological functions through the epigenetic regulation of gene transcription; however, its role in bladder cancer remains largely unknown. Our study investigated the role of WDR5 in bladder cancer and demonstrated that WDR5 was upregulated in bladder cancer tissues, and elevated WDR5 protein levels positively correlated with advanced tumor stage and poor survival. Through gain or loss of function, we demonstrated that WDR5 promoted proliferation, self-renewal and chemoresistance to cisplatin in bladder cancer cells in vitro, and tumor growth in vivo. Mechanistically, WDR5 regulated various functions in bladder cancer by mediating the transcription of cyclin B1, cyclin E1, cyclin E2, UHMK1, MCL1, BIRC3 and Nanog by histone H3 lysine 4 trimethylation. Therefore, we have discovered that WDR5 plays an important role in bladder cancer suggesting that WDR5 is a potential biomarker and a promising target in the treatment of bladder cancer.
doi:10.1038/srep08293
PMCID: PMC4319178  PMID: 25656485
2.  Expression of cytochrome P450 CYP81A6 in rice: tissue specificity, protein subcellular localization, and response to herbicide application*  
The cytochrome P450 gene CYP81A6 confers tolerance to bentazon and metsulfuron-methyl, two selective herbicides widely used for weed control in rice and wheat fields. Knockout mutants of CYP81A6 are highly susceptible to both herbicides. The present study aimed to characterize the CYP81A6 expression in rice. Quantitative real-time polymerase chain reaction (PCR) analyses demonstrated that foliar treatment of bentazon (500 mg/L) greatly induced expression of CYP81A6 in both wild-type (Jiazhe B) and its knockout mutant (Jiazhe mB): a 10-fold increase at 9 h before returning to basal levels at 24 h in Jiazhe B, while in the mutant the expression level rose to >20-fold at 12 h and maintained at such high level up to 24 h post exposure. In contrast, metsulfuron-methyl (500 mg/L) treatment did not affect the expression of CYP81A6 in Jiazhe B within 80 h; thereafter the expression peaked at 120 h and returned gradually to basal levels by Day 6. We suggest that a metabolite of metsulfuron-methyl, 1H-2,3-benzothiazin-4-(3H)-one-2,2-dioxide, is likely to be responsible for inducing CYP81A6 expression, rather than the metsulfuron-methyl itself. Use of a promoter-GUS reporter construct (CYP81A6Pro::GUS) demonstrated that CYP81A6 was constitutively expressed throughout the plant, with the highest expression in the upper surfaces of leaves. Subcellular localization studies in rice protoplasts showed that CYP81A6 was localized in the endoplasmic reticulum. These observations advance our understanding of CYP81A6 expression in rice, particularly its response to the two herbicides.
doi:10.1631/jzus.B1400168
PMCID: PMC4322422  PMID: 25644466
CYP81A6; Bentazon; Metsulfuron-methyl; Expression induction; Xenobiotics
3.  The SmgGDS splice variant SmgGDS-558 is a key promoter of tumor growth and RhoA signaling in breast cancer 
Molecular cancer research : MCR  2013;12(1):130-142.
Breast cancer malignancy is promoted by the small GTPases RhoA and RhoC. SmgGDS is a guanine nucleotide exchange factor that activates RhoA and RhoC in vitro. We previously reported that two splice variants of SmgGDS, SmgGDS-607 and SmgGDS-558, have different characteristics in binding and transport of small GTPases. To define the role of SmgGDS in breast cancer, we tested the expression of SmgGDS in breast tumors, and the role of each splice variant in proliferation, tumor growth, Rho activation, and NF-κB transcriptional activity in breast cancer cells. We show upregulated SmgGDS protein expression in breast cancer samples compared to normal breast tissue. Additionally, Kaplan-Meier survival curves indicated that patients with high SmgGDS expression in their tumors had worse clinical outcomes. Knockdown of SmgGDS-558, but not SmgGDS-607, in breast cancer cells decreased proliferation, in vivo tumor growth, and RhoA activity. Futhermore, we found that SmgGDS promoted a Rho-dependent activation of the transcription factor NF-κB, which provides a potential mechanism to define how SmgGDS-mediated activation of RhoA promotes breast cancer. This study demonstrates that elevated SmgGDS expression in breast tumors correlates with poor survival, and that SmgGDS-558 plays a functional role in breast cancer malignancy. Taken together, these findings define SmgGDS-558 as a unique promoter of RhoA and NF-κB activity and a novel therapeutic target in breast cancer.
doi:10.1158/1541-7786.MCR-13-0362
PMCID: PMC4285378  PMID: 24197117
SmgGDS; RhoA; breast cancer; NF-κB; Rap1GDS1
5.  Integrated analyses of DNA methylation and hydroxymethylation reveal tumor suppressive roles of ECM1, ATF5, and EOMES in human hepatocellular carcinoma 
Genome Biology  2014;15(12):533.
Background
Differences in 5-hydroxymethylcytosine, 5hmC, distributions may complicate previous observations of abnormal cytosine methylation statuses that are used for the identification of new tumor suppressor gene candidates that are relevant to human hepatocarcinogenesis. The simultaneous detection of 5-methylcytosine and 5-hydroxymethylcytosine is likely to stimulate the discovery of aberrantly methylated genes with increased accuracy in human hepatocellular carcinoma.
Results
Here, we performed ultra-performance liquid chromatography/tandem mass spectrometry and single-base high-throughput sequencing, Hydroxymethylation and Methylation Sensitive Tag sequencing, HMST-seq, to synchronously measure these two modifications in human hepatocellular carcinoma samples. After identification of differentially methylated and hydroxymethylated genes in human hepatocellular carcinoma, we integrate DNA copy-number alterations, as determined using array-based comparative genomic hybridization data, with gene expression to identify genes that are potentially silenced by promoter hypermethylation.
Conclusions
We report a high enrichment of genes with epigenetic aberrations in cancer signaling pathways. Six genes were selected as tumor suppressor gene candidates, among which, ECM1, ATF5 and EOMES are confirmed via siRNA experiments to have potential anti-cancer functions.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0533-9) contains supplementary material, which is available to authorized users.
doi:10.1186/s13059-014-0533-9
PMCID: PMC4253612  PMID: 25517360
6.  Long-Duration Ventricular Fibrillation Exhibits 2 Distinct Organized States 
Background
Previous studies showed that endocardial activation during long-duration ventricular fibrillation (VF) exhibits organized activity. We identified and quantified the different types of organized activity.
Methods and Results
Two 64-electrode basket catheters were inserted, respectively, into the left ventricle and right ventricle of dogs to record endocardial activation from the endocardium during 7 minutes of VF (controls, n=6). The study was repeated with the KATP channel opener pinacidil (n=6) and the calcium channel blocker flunarizine (n=6). After 2 minutes of VF without drugs, 2 highly organized left ventricular endocardial activation patterns were observed: (1) ventricular electric synchrony pattern, in which endocardial activation arose focally and either had a propagation sequence similar to sinus rhythm or arose near papillary muscles, and (2) stable pattern, in which activation was regular and repeatable, sometimes forming a stable re-entrant circuit around the left ventricular apex. Between 3 and 7 minutes of VF, the percent of time ventricular electric synchrony was present was control=25%, flunarizine=24% (P=0.44), and pinacidil=0.1% (P<0.001) and the percent of time stable pattern was present was control=71%, flunarizine=48% (P<0.001), and pinacidil=56% (P<0.001). The remainder of the time, nonstable re-entrant activation with little repeatability was present.
Conclusions
After 3 minutes, VF exhibits 2 highly organized endocardial activation patterns 96% of the time, one potentially arising focally in the Purkinje system that was prevented with a KATP channel opener but not a calcium channel blocker and the other potentially arising from a stable re-entrant circuit near the apical left ventricular endocardium.
doi:10.1161/CIRCEP.113.000459
PMCID: PMC3982786  PMID: 24243784
arrhythmias; cardiac; ventricular fibrillation
7.  Gene Expression Profile of Increased Heart Rate in Shensongyangxin-Treated Bradycardia Rabbits 
Aims. The present study tries to investigate the gene expression profile of bradycardia rabbits' hearts after SSYX (SSYX, a traditional Chinese medicine) treatment. Methods. Eighteen adult rabbits were randomly assigned in three groups: sham, model, and SSYX treatment groups. Heart rate was recorded in rabbits and total RNA was isolated from hearts. Gene expression profiling was conducted and quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to confirm the gene expression results. Patch clamp using human induced pluripotent stem cell-derived cardiomyocytes was applied to record the calcium current in the presence of SSYX. Results. The mean RR interval reduced after six weeks due to the injury of the sinoatrial node in the model group. This effect was partially reversed by 4-week SSYX treatment. cDNA microarray demonstrated that genes related with pacemaker current, calcium ion homeostasis, and signaling were altered by SSYX treatment. Results from patch clamp demonstrated that SSYX reduced the calcium current which is consistent with gene expression results. Conclusion. The present study shows mRNA remodeling of bradycardia and demonstrates that SSYX is effective in treating bradycardia by reversing altered gene expression in bradycardia models. Reduced calcium current by SSYX also confirmed the gene expression results.
doi:10.1155/2014/715937
PMCID: PMC4265696  PMID: 25525447
8.  Pulmonary tuberculosis with false-positive 18F-fluorodeoxyglucose positron emission tomography mimicking recurrent lung cancer: A case report 
Recurrent lung cancer is a common clinical condition. 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is currently the predominant non-invasive imaging technique used for the detection of tumor recurrence. In the present study, the case of a 67-year-old male suspected to have postoperative recurrence of primary lung cancer was examined. Chest computed tomography (CT) scans identified a subpleural nodule grown within a short time period, along with the occurrence of multiple patchy shadows on the right lung. PET-CT scans revealed an increased FDG uptake in the surgical site, which exhibited features of a malignant disease. However, a video-assisted thoracoscopic biopsy provided the diagnosis of tuberculosis and guided further appropriate treatment. In conclusion, further evaluation is required in all patients with suspected metastatic and recurrent carcinoma.
doi:10.3892/etm.2014.2054
PMCID: PMC4247310  PMID: 25452794
tuberculosis; recurrence; lung cancer; positron emission tomography-computed tomography
10.  Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells 
Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties and may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including renal cancer still unknown. MiR-26a induces cell growth, cell cycle and cell apoptosis progression via direct targeting of Bcl-2, clyclin D1 and PTEN in cancer cells. In the present study, we used 786-O human renal cancer cell lines to study the effects and mechanisms of metformin. Metformin treatment inhibited RCC cells proliferation by increasing expression of miR-26a in 786-O cells (P < 0.05). As a result, protein abundance of Bcl-2 and cyclin D1 was decreased and PTEN was increased in cells exposed to metformin. Also over-expression of miR-26a can inhibited cell proliferation by down-regulating Bcl-2, cyclin D1 and up-regulating PTEN expression. Therefore, these data for the first time provide novel evidence for a mechanism that the anticancer activities of metformin are due to upregulation of miR-26a and affect its downstream target gene.
PMCID: PMC4238495  PMID: 25419360
Metformin; renal cancer; proliferation; miR-26a
11.  Receptor “hijacking” by malignant glioma cells: a tactic for tumor progression 
Cancer letters  2008;267(2):254-261.
Gliomas are the most common and deadly tumors in the central nervous system (CNS). In the course of studying the role of chemoattractant receptors in tumor growth and metastasis, we discovered that highly malignant human glioblastoma and anaplastic astrocytoma specimens were stained positively for the formylpeptide receptor (FPR), which is normally expressed in myeloid cells and accounts for their chemotaxis and activation induced responses to bacterial peptides. Screening of human glioma cell lines revealed that FPR was expressed selectively in glioma cell lines with a more highly malignant phenotype. FPR expressed in glioblastoma cell lines mediates cell chemotaxis, proliferation and production of an angiogenic factor, vascular endothelial growth factor (VEGF), in response to agonists released by necrotic tumor cells. Furthermore, FPR in glioblastoma cells activates the receptor for epidermal growth factor (EGFR) by increasing the phosphorylation of a selected tyrosine residue in the intracellular tail of EGFR. Thus, FPR hijacked by human glioblastoma cells exploits the function of EGFR to promote rapid tumor progression.
doi:10.1016/j.canlet.2008.03.014
PMCID: PMC4191659  PMID: 18433988
glioma; formyl peptide receptor; chemotaxis; angiogenesis
12.  Majorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models 
Statistics and computing  2013;24(5):871-883.
Recent studies have demonstrated theoretical attractiveness of a class of concave penalties in variable selection, including the smoothly clipped absolute deviation and minimax concave penalties. The computation of the concave penalized solutions in high-dimensional models, however, is a difficult task. We propose a majorization minimization by coordinate descent (MMCD) algorithm for computing the concave penalized solutions in generalized linear models. In contrast to the existing algorithms that use local quadratic or local linear approximation to the penalty function, the MMCD seeks to majorize the negative log-likelihood by a quadratic loss, but does not use any approximation to the penalty. This strategy makes it possible to avoid the computation of a scaling factor in each update of the solutions, which improves the efficiency of coordinate descent. Under certain regularity conditions, we establish theoretical convergence property of the MMCD. We implement this algorithm for a penalized logistic regression model using the SCAD and MCP penalties. Simulation studies and a data example demonstrate that the MMCD works sufficiently fast for the penalized logistic regression in high-dimensional settings where the number of covariates is much larger than the sample size.
doi:10.1007/s11222-013-9407-3
PMCID: PMC4191872  PMID: 25309048
logistic regression; p ≫ n models; smoothly clipped absolute deviation penalty; minimax concave penalty; variable selection
13.  Identification of gene–environment interactions in cancer studies using penalization 
Genomics  2013;102(4):10.1016/j.ygeno.2013.08.006.
High-throughput cancer studies have been extensively conducted, searching for genetic markers associated with outcomes beyond clinical and environmental risk factors. Gene–environment interactions can have important implications beyond main effects. The commonly-adopted single-marker analysis cannot accommodate the joint effects of a large number of markers. The existing joint-effects methods also have limitations. Specifically, they may suffer from high computational cost, do not respect the “main effect, interaction” hierarchical structure, or use ineffective techniques. We develop a penalization method for the identification of important G × E interactions and main effects. It has an intuitive formulation, respects the hierarchical structure, accommodates the joint effects of multiple markers, and is computationally affordable. In numerical study, we analyze prognosis data under the AFT (accelerated failure time) model. Simulation shows satisfactory performance of the proposed method. Analysis of an NHL (non-Hodgkin lymphoma) study with SNP measurements shows that the proposed method identifies markers with important implications and satisfactory prediction performance.
doi:10.1016/j.ygeno.2013.08.006
PMCID: PMC3869641  PMID: 23994599
Gene–environment interaction; Penalized marker identification; Cancer prognosis
14.  Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias 
Ischaemic cardiac arrhythmias cause a large proportion of sudden cardiac deaths worldwide. The ischaemic arrhythmogenesis is primarily because of the dysfunction and adverse remodelling of sarcolemma ion channels. However, the potential regulators of sarcolemma ion channel turnover and function in ischaemic cardiac arrhythmias remains unknown. Our previous studies indicate that dynamin-2 (DNM2), a cardiac membrane-remodelling GTPase, modulates ion channels membrane trafficking in the cardiomyocytes. Here, we have found that DNM2 plays an important role in acute ischaemic arrhythmias. In rat ventricular tissues and primary cardiomyocytes subjected to acute ischaemic stress, the DNM2 protein and transcription levels were markedly down-regulated. This DNM2 reduction was coupled with severe ventricular arrhythmias. Moreover, we identified that the down-regulation of DNM2 within cardiomyocytes increases the action potential amplitude and prolongs the re-polarization duration by depressing the retrograde trafficking of Nav1.5 and Kir2.1 channels. These effects are likely to account for the DNM2 defect-induced arrhythmogenic potentials. These results suggest that DNM2, with its multi-ion channel targeting properties, could be a promising target for novel antiarrhythmic therapies.
doi:10.1111/jcmm.12335
PMCID: PMC4244014  PMID: 25092467
ischaemic cardiac arrhythmias; dynamin-2; ion channels; Nav1.5; Kir2.1
15.  Accounting for linkage disequilibrium in genome-wide association studies: A penalized regression method 
Statistics and its interface  2013;6(1):99-115.
Penalized regression methods are becoming increasingly popular in genome-wide association studies (GWAS) for identifying genetic markers associated with disease. However, standard penalized methods such as LASSO do not take into account the possible linkage disequilibrium between adjacent markers. We propose a novel penalized approach for GWAS using a dense set of single nucleotide polymorphisms (SNPs). The proposed method uses the minimax concave penalty (MCP) for marker selection and incorporates linkage disequilibrium (LD) information by penalizing the difference of the genetic effects at adjacent SNPs with high correlation. A coordinate descent algorithm is derived to implement the proposed method. This algorithm is efficient in dealing with a large number of SNPs. A multi-split method is used to calculate the p-values of the selected SNPs for assessing their significance. We refer to the proposed penalty function as the smoothed MCP and the proposed approach as the SMCP method. Performance of the proposed SMCP method and its comparison with LASSO and MCP approaches are evaluated through simulation studies, which demonstrate that the proposed method is more accurate in selecting associated SNPs. Its applicability to real data is illustrated using heterogeneous stock mice data and a rheumatoid arthritis.
doi:10.4310/SII.2013.v6.n1.a10
PMCID: PMC4172344  PMID: 25258655
Genetic association; Feature selection; Linkage disequilibrium; Penalized regression; Single nucleotide polymorphism
16.  Role of ERK-MAPK signaling pathway in pentagastrin-regulated growth of large intestinal carcinoma 
World Journal of Gastroenterology : WJG  2014;20(35):12542-12550.
AIM: To explore the role and mechanisms of extracellular signal-regulated protein kinase-mitogen-activated protein kinase (ERK-MAPK) signaling in pentagastrin-regulated growth of large intestinal carcinoma.
METHODS: HT-29 cells were incubated in different media and divided into the control group, pentagastrin group, proglumide group, and pentagastrin + proglumide group. No reagent was added to the control group, and other groups were incubated with reagent at different concentrations. Changes in proliferation of HT-29 cells were detected by MTT assay, and the optimal concentrations of pentagastrin and proglumide were determined. The changes in proliferation index (PI) and apoptosis rate (AR) of HT-29 cells were detected by Annexin V-fluorescein isothiocyanate flow cytometry. mRNA expression of pentagastrin receptor/cholecystokinin-B receptor (CCK-BR), ERK1/2 and K-ras were detected by reverse transcriptase polymerase chain reaction. The protein and phosphorylation level of ERK1/2 and K-ras were detected by western blotting. All data were analyzed by analysis of variance and SNK-q test.
RESULTS: The proliferation of HT-29 cells was stimulated by pentagastrin at a concentration of 6.25-100 mg/L, and the optimal concentration of pentagastrin was 25.0 mg/L (F = 31.36, P < 0.05). Proglumide had no obvious effect on the proliferation of HT-29 cells, while it significantly inhibited the proliferation of HT-29 cells stimulated by pentagastrin when the concentration of proglumide was 8.0-128.0 mg/L, and the optimal concentration was 32.0 mg/L (F = 24.31, P < 0.05). The PI of the pentagastrin (25.0 mg/L) group was 37.5% ± 5.2%, which was significantly higher than 27.7% ± 5.0% of the control group and 27.3% ± 5.8% of the pentagastrin (25.0 mg/L) + proglumide (32.0 mg/L) group (Q = 4.56-4.75, P < 0.05). The AR of the pentagastrin (25.0 mg/L) group was 1.9% ± 0.4%, which was significantly lower than 2.5% ± 0.4% of the control group and 2.4% ± 0.3% of the pentagastrin (25.0 mg/L) + proglumide (32.0 mg/L) group (Q = 4.23-4.06, P < 0.05). mRNA expression of CCK-BR was detected in HT-29 cells. The phosphorylation levels of ERK1/2 protein and phosphorylated K-ras protein of the pentagastrin group were 0.43% ± 0.04% and 0.45% ± 0.06%, which were significantly higher than 0.32% ± 0.02% and 0.31% ± 0.05% of the control group (Q = 7.78-4.95, P < 0.05), and 0.36% ± 0.01% and 0.35% ± 0.04% of the pentagastrin + proglumide group (Q = 5.72-4.08, P < 0.05). There were no significant differences in the mRNA and protein expression of ERK1/2 and K-ras among the control, pentagastrin, proglumide and pentagastrin + proglumide groups (F = 0.52, 0.72, 0.78, 0.28; P > 0.05).
CONCLUSION: Gastrin stimulates proliferation of HT-29 cells and inhibits apoptosis by upregulating phosphorylation of ERK and K-ras through the Ras-Raf-MEK1/2-ERK1/2 pathway, and this is restrained by proglumide.
doi:10.3748/wjg.v20.i35.12542
PMCID: PMC4168089  PMID: 25253956
Gastrin; Mitogen-activated protein kinase; Extracellular signal-regulated protein kinase 1/2; K-ras; Large intestinal carcinoma
17.  miR-10b is overexpressed in hepatocellular carcinoma and promotes cell proliferation, migration and invasion through RhoC, uPAR and MMPs 
Background
Recently, miR-10b is identified as a miRNA highly expressed in many human cancers, promoting cell migration and invasion. However, the specific function of miR-10b in hepatocellular carcinoma (HCC) is unclear at this point.
Methods
The miR-10b expression levels in 60 paired different TNM Stage HCC tumor tissues compared with adjacent non-tumor (ANT) tissues, normal tissue control (8 benign tumor and 7 normal liver tissues), 3 normal liver and 7 HCC cell lines were measured by real-time quantitative RT-PCR and to evaluate their association with HCC clinicopathologic features. Invasion assay, MTT proliferation assay and wound-healing assay were performed to test the invasion and proliferation of HCC cell after transfection. The effect of miR-10b on HCC in vivo was validated by murine xenograft model.
Results
We found that miR-10b expression was increased in human HCC tissues and cell lines compared with normal control, respectively. The expression of miR-10b was correlated with HCC metastatic ability. Overexpression of miR-10b in MHCC-97L cells increased cell motility and invasiveness, whereas inhibition of miR-10b in MHCC-97H cells reduced cell motility and invasiveness in vitro and in vivo. We also showed that HOXD10 was negatively regulated by miR-10b at the posttranscriptional level, via a specific target site within the 3′UTR by luciferase reporter assay. Furthermore, we found that miR-10b induced HCC cell invasion and migration by modulating the HOXD10 target gene RhoC, uPAR, MMP-2 and MMP-9 expression.
Conclusions
Our results suggested that miR-10b was overexpressed in HCC and promoted HCC cell migration and invasion through the HOXD10/ RhoC/ uPAR/ MMPs pathway which may provide a novel bio-target for HCC therapy.
doi:10.1186/s12967-014-0234-x
PMCID: PMC4192292  PMID: 25236186
miR-10b; HCC; invasion; migration; RhoC; uPAR; MMPs
18.  IQGAP1 promotes the phenotypic switch of vascular smooth muscle by myocardin pathway: a potential target for varicose vein 
Recently, the architectural remodeling of venous vessel wall ranks as the basis of varicose veins development based on the phenotypic state of vascular smooth muscle cells (VSMCs). In this study, we firstly demonstrated an obvious up-regulation of IQ-domain GTPase-activating protein 1 (IQGAP1) in patients with varicose veins. Importantly, following stimulation with PDGF-BB for 4 h, a common inducer of phenotypic switch in VSMCs, a dramatically time-dependent increase in IQGAP1 expression was observed in human venous smooth muscle cells (HUVSMCs), concomitant with the down-regulation of SMC markers [including α-smooth muscle actin (SMA), smooth muscle calponin (CNN), SM22α (SM22)], suggesting a critical function of IQGAP1 during the switch of synthetic VSMC phenotype. Further analysis ascertained that IQGAP1 overexpression significantly inhibited the expression of SMA, SM and CNN, while its silencing dramatically promoted their expression levels. Moreover, the elevated IQGAP1 enhanced cell proliferation, migration and rearrangement. Mechanism assay confirmed that IQGAP1 overexpression notably blocked myocardin levels. Importantly, after transfection with myocardin siRNA, IQGAP1 down-regulation-induced decrease in cell proliferation, migration and cell rearrangement was remarkably attenuated. Together, these results demonstrated that IQGAP1 may regulate the phenotypic switch of VSMCs by myocardin pathway, which is critical for the pathological progression of varicose vein. Therefore, this study supports a prominent insight into how IQGAP1 possesses its benefit function in varicose veins development by regulating vascular remodeling.
PMCID: PMC4230105  PMID: 25400725
Varicose vein; IQGAP1; vascular remodeling; VSMC
19.  Integrative analysis of multiple cancer genomic datasets under the heterogeneity model 
Statistics in medicine  2013;32(20):3509-3521.
In the analysis of cancer studies with high-dimensional genomic measurements, integrative analysis provides an effective way of pooling information across multiple heterogeneous datasets. The genomic basis of multiple independent datasets, which can be characterized by the sets of genomic markers, can be described using the homogeneity model or heterogeneity model. Under the homogeneity model, all datasets share the same set of markers associated with responses. In contrast, under the heterogeneity model, different studies have overlapping but possibly different sets of markers. The heterogeneity model contains the homogeneity model as a special case and can be much more flexible. Marker selection under the heterogeneity model calls for bi-level selection to determine whether a covariate is associated with response in any study at all as well as in which studies it is associated with responses. In this study, we consider two minimax concave penalty (MCP) based penalization approaches for marker selection under the heterogeneity model. For each approach, we describe its rationale and an effective computational algorithm. We conduct simulation to investigate their performance and compare with the existing alternatives. We also apply the proposed approaches to the analysis of gene expression data on multiple cancers.
doi:10.1002/sim.5780
PMCID: PMC3743947  PMID: 23519988
Integrative analysis; Heterogeneity model; Marker selection
21.  Unconventional Sequence Requirement for Viral Late Gene Core Promoters of Murine Gammaherpesvirus 68 
Journal of Virology  2014;88(6):3411-3422.
Infection with the human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), is associated with several cancers. During lytic replication of herpesviruses, viral genes are expressed in an ordered cascade. However, the mechanism by which late gene expression is regulated has not been well characterized in gammaherpesviruses. In this study, we have investigated the cis element that mediates late gene expression during de novo lytic infection with murine gammaherpesvirus 68 (MHV-68). A reporter system was established and used to assess the activity of viral late gene promoters upon infection with MHV-68. It was found that the viral origin of lytic replication, orilyt, must be on the reporter plasmid to support activation of the late gene promoter. Furthermore, the DNA sequence required for the activation of late gene promoters was mapped to a core element containing a distinct TATT box and its neighboring sequences. The critical nucleotides of the TATT box region were determined by systematic mutagenesis in the reporter system, and the significance of these nucleotides was confirmed in the context of the viral genome. In addition, EBV and KSHV late gene core promoters could be activated by MHV-68 lytic replication, indicating that the mechanisms controlling late gene expression are conserved among gammaherpesviruses. Therefore, our results on MHV-68 establish a solid foundation for mechanistic studies of late gene regulation.
doi:10.1128/JVI.01374-13
PMCID: PMC3957950  PMID: 24403583
22.  Association between the IL1B, IL1RN polymorphisms and COPD risk: A meta-analysis 
Scientific Reports  2014;4:6202.
The interleukin-1 (IL-1) gene polymorphisms have been implicated in chronic obstructive pulmonary disease (COPD) risk, but results are controversial. We aimed to conduct a meta-analysis to address this issue. Odds ratio (OR) and 95% confidence interval (CI) were used to investigate the strength of the association. The meta-analysis revealed no association between the IL1B (−511), (−31), (+3954) polymorphisms and COPD risk. However, stratification by ethnicity indicated that the T allele carriers of the IL1B (−511) polymorphism and the C allele carriers of the IL1B (−31) variant were associated with an increased risk for developing COPD in East Asians (OR = 1.61, 95% CI: 1.13–2.31, Pz = 0.009 and OR = 1.55, 95% CI: 1.14–2.11, Pz = 0.006, respectively). The meta-analysis revealed a significant association between the IL1RN (VNTR) polymorphism and COPD risk in all study subjects and East Asians under homozygote model (22 vs. LL: OR = 3.16, 95% CI: 1.23–8.13, Pz = 0.017 and OR = 3.20, 95% CI: 1.13–9.12, Pz = 0.029, respectively). Our meta-analysis suggests that the IL1B (−511), (−31) and IL1RN (VNTR) polymorphisms are associated with COPD risk in East Asians. There is no association between the IL1B (+3954) polymorphism and COPD risk. Further studies should be performed in other ethnic groups besides East Asians.
doi:10.1038/srep06202
PMCID: PMC4150103  PMID: 25174605
23.  FDG PET-CT combined with TBNA for the diagnosis of atypical relapsing polychondritis: report of 2 cases and a literature review 
Journal of Thoracic Disease  2014;6(9):1285-1292.
Objective
To explore the value of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) combined with transbronchial needle aspiration (TBNA) in diagnosing atypical relapsing polychondritis (RP).
Methods
Data from two patients with atypical RP, which had been diagnosed in our hospital using FDG PET-CT combined with TBNA, were retrospectively analyzed. A review of the relevant literature was also performed.
Results
Consistent with the previously reported 20 cases of RP that had been diagnosed using FDG PET-CT, the two patients in the present study showed the involvement of multiple organs, including the nose, throat, trachea, bronchi, costicartilage and joint cartilages, and increased FDG uptake was found in these areas. The mean value of SUVmax was 5.14. PET-CT revealed that 86.4% of the patients with RP had airway involvement. TBNA technique was used for biopsy of the hypermetabolic lesions, and pathologic examinations confirmed the diagnosis of RP. The time to diagnosis in these two patients and the 20 cases reported previously was about 6.9 months, significantly shorter than the average diagnosis time (20 months).
Conclusions
FDG PET-CT has several advantages for diagnosing RP, especially atypical RP. TBNA is a minimally invasive and safe technique for obtaining airway cartilage. Combining PET-CT with TBNA may play an important role in shortening the time to diagnosis in patients with RP involvement of airway.
doi:10.3978/j.issn.2072-1439.2014.08.21
PMCID: PMC4178094  PMID: 25276371
Relapsing polychondritis (RP); positron emission tomography-computed tomography (PET-CT); transbronchial needle aspiration (TBNA); cartilage; fluorodeoxyglucose (FDG); standard uptake value (SUV)
24.  Prototype of biliary drug-eluting stent with photodynamic and chemotherapy using electrospinning 
Background
The combination of biliary stent with photodynamic and chemotherapy seemed to be a beneficial palliative treatment of unresectable cholangiocarcinoma. However, by intravenous delivery to the target tumor the distribution of the drug had its limitations and caused serious side effect on non-target organs. Therefore, in this study, we are going to develop a localized eluting stent, named PDT-chemo stent, covered with gemcitabine (GEM) and hematoporphyrin (HP).
Methods
The prototype of PDT-chemo stent was made through electrospinning and electrospraying dual-processes with an electrical charge to cover the stent with a drug-storing membrane from polymer liquid. The design of prototype used PU as the material of the backing layer, and PCL/PEG blends in different molar ratio of 9:1 and of 1:4 were used in two drug-storing layers with GEM and HP loaded respectively.
Results
The optical microscopy revealed that the backing layer was formed in fine fibers from electrospinning, while drug-storing layers, attributed to the droplets from electrospraying process. The covered membrane, the morphology of which was observed by scanning electron microscopy (SEM), covered the stent surface homogeneously without crack appearances. The GEM had almost 100% of electrosprayed efficiency than 70% HP loaded on the covered membrane due to the different solubility of drug in PEG/PCL blends. Drug release study confirmed the two-phased drug release pattern by regulating in different molar ratio of PEG/PCL blends polymer.
Conclusions
The result proves that the PDT-chemo stent is composed of a first burst-releasing phase from HP and a later slow-releasing phase from GEM eluting. This two-phase of drug eluting stent may provide a new prospect of localized and controlled release treatment for cholangiocarcinoma disease.
doi:10.1186/1475-925X-13-118
PMCID: PMC4155126  PMID: 25138739
Cholangiocarcinoma; Photodynamic therapy; Chemotherapy; Biliary drug-eluting stent; Electrospinning and Electrospraying
25.  Relationship between the Prevalence of Thyroid Nodules and Metabolic Syndrome in the Iodine-Adequate Area of Hangzhou, China: A Cross-Sectional and Cohort Study 
Objective. The association between thyroid nodule (TN) prevalence and metabolic syndrome (MetS) has only rarely been examined in iodine-adequate areas and needs further clarification. We investigated correlations between MetS and TN prevalence in the iodine-adequate area of Hangzhou, China. Material and Method. A cross-sectional study that screened and recruited individuals for cohort research 3 years later. The 13522 subjects (8926 men, 4596 women) were screened in 2009 for all MetS components, thyroid ultrasound (US), and thyroid function. Cohort research recruited 1610 subjects who were screened in both 2009 and 2012, of whom 1061 underwent follow-up research. Results. The prevalence of TN was higher in the MetS (+) group than in the MetS (−) group (χ2 = 69.63, P < 0.001) and higher in women than in men (χ2 = 11.65, P = 0.001). Waist circumference (WC) was positively related to the prevalence of TN (OR = 1.022, P < 0.001). Individuals with greater WC in 2009 were more likely to suffer from TN in 2012 (RR = 1.434, P = 0.024). Elevated triglyceride level was a risk factor for developing new TN (RR = 1.001, P = 0.035). Conclusion. Both greater WC and elevated triglycerides are risk factors for new TN in this iodine-adequate area in China.
doi:10.1155/2014/675796
PMCID: PMC4150509  PMID: 25197276

Results 1-25 (293)