Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Remote Dose-Dependent Effects of Dry Needling at Distant Myofascial Trigger Spots of Rabbit Skeletal Muscles on Reduction of Substance P Levels of Proximal Muscle and Spinal Cords 
BioMed Research International  2014;2014:982121.
Background. Dry needling at distant myofascial trigger points is an effective pain management in patients with myofascial pain. However, the biochemical effects of remote dry needling are not well understood. This study evaluates the remote effects of dry needling with different dosages on the expressions of substance P (SP) in the proximal muscle, spinal dorsal horns of rabbits. Methods. Male New Zealand rabbits (2.5–3.0 kg) received dry needling at myofascial trigger spots of a gastrocnemius (distant muscle) in one (1D) or five sessions (5D). Bilateral biceps femoris (proximal muscles) and superficial laminaes of L5-S2, T2-T5, and C2-C5 were sampled immediately and 5 days after dry needling to determine the levels of SP using immunohistochemistry and western blot. Results. Immediately after dry needling for 1D and 5D, the expressions of SP were significantly decreased in ipsilateral biceps femoris and bilateral spinal superficial laminaes (P < .05). Five days after dry needling, these reduced immunoactivities of SP were found only in animals receiving 5D dry needling (P < .05). Conclusions. This remote effect of dry needling involves the reduction of SP levels in proximal muscle and spinal superficial laminaes, which may be closely associated with the control of myofascial pain.
PMCID: PMC4168154  PMID: 25276839
2.  Dry Needling at Myofascial Trigger Spots of Rabbit Skeletal Muscles Modulates the Biochemicals Associated with Pain, Inflammation, and Hypoxia 
Background and Purpose. Dry needling is an effective therapy for the treatment of pain associated with myofascial trigger point (MTrP). However, the biochemical effects of dry needling that are associated with pain, inflammation, and hypoxia are unclear. This study investigated the activities of β-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF after different dosages of dry needling at the myofascial trigger spots (MTrSs) of a skeletal muscle in rabbit. Materials and Methods. Dry needling was performed either with one dosage (1D) or five dosages (5D) into the biceps femoris with MTrSs in New Zealand rabbits. Biceps femoris, serum, and dorsal root ganglion (DRG) were sampled immediately and 5 d after dry needling for β-endorphin, substance P, TNF-α, COX-2, HIF-1α, iNOS, and VEGF immunoassays. Results. The 1D treatment enhanced the β-endorphin levels in the biceps femoris and serum and reduced substance P in the biceps femoris and DRG. The 5D treatment reversed these effects and was accompanied by increase of TNF-α, COX-2, HIF-1α, iNOS, and VEGF production in the biceps femoris. Moreover, the higher levels of these biochemicals were still maintained 5 d after treatment. Conclusion. Dry needling at the MTrSs modulates various biochemicals associated with pain, inflammation, and hypoxia in a dose-dependent manner.
PMCID: PMC3544533  PMID: 23346198
3.  Needling therapy for myofascial pain: recommended technique with multiple rapid needle insertion 
Biomedicine  2015;4:13.
Myofascial trigger point (MTrP) is a major cause of muscle pain, characterized with a hyperirritable spot due to accumulation of sensitized nociceptors in skeletal muscle fibers. Many needling therapy techniques for MTrP inactivation exist. Based on prior human and animal studies, multiple insertions can almost completely eliminate the MTrP pain forthwith. It is an attempt to stimulate many sensitive loci (nociceptors) in the MTrP region to induce sharp pain, referred pain or local twitch response. Suggested mechanisms of needling analgesia include effects related to immune, hormonal or nervous system. Compared to slow-acting biochemical effects involving immune or hormonal system, neurological effects can act faster to provide immediate and complete pain relief. Most likely mechanism of multiple needle insertion therapy for MTrP inactivation is to encounter sensitive nociceptors with the high-pressure stimulation of a sharp needle tip to activate a descending pain inhibitory system. This technique is strongly recommended for myofascial pain therapy in order to resume patient’s normal life rapidly, thus saving medical and social resources.
PMCID: PMC4264979  PMID: 25520926
Acupuncture; Analgesia; Mechanism; Myofascial trigger point; Needling
4.  Remote Subcutaneous Needling to Suppress the Irritability of Myofascial Trigger Spots: An Experimental Study in Rabbits 
Objective. To obtain electrophysiological effects of Fu's subcutaneous needling (FSN) on needling distance by assessment of endplate noise (EPN) recorded from the myofascial trigger spots (MTrSs) in rabbit skeletal muscle. Method. Eighteen New Zealand rabbits weighing 2.5–3.0 kg were randomly divided into two groups as follows: proximal needling (PN) group and distal needling (DN) group. The needling procedure followed the instructions described by the inventor of FSN, including needling insertion and swaying movement. The amplitudes of EPN on the MTrS region of BF muscle were recorded as an index of MTrS irritability. Random sampling of EPN tracings were taken for further analyses before, during, and after FSN treatment. Results. In PN and DN groups, the trends of EPN amplitude alterations were similar at conditions before, during, and after FSN treatment. The degree of reduction in the EPN amplitude in PN group was significantly higher than that in DN group. There were no significant changes in EPN amplitudes in the MTrS of contralateral BF without FSN intervention either in DN or PN group. Conclusion. The irritability of proximal MTrSs could be modulated after ipsilateral FSNs. The placement of FSN may affect the effectiveness of suppression of irritability of MTrSs.
PMCID: PMC3544156  PMID: 23346200
5.  Effects of electroacupuncture on recent stroke inpatients with incomplete bladder emptying: a preliminary study 
Incomplete bladder emptying (IBE) is defined as having a postvoid residual (PVR) urine volume greater than 100 mL for 2 consecutive days. IBE is common in stroke patients and could necessitate indwelling or intermittent catheterization. The condition is correlated with urinary tract infections, which could impede rehabilitation progress and increase medical costs. Treatment for patients with IBE includes bladder retraining, biofeedback, medication, and botulinum toxin injection, but none of these interventions are completely effective.
All patients with acute stroke who were admitted to the rehabilitation ward between August 2010 and April 2011 were included in the study and their PVR urine volume was checked. Electroacupuncture (EA; 1 Hz, 15 minutes) was performed on the acupoints Sanyinjiao (SP6), Ciliao (BL32), and Pangguangshu (BL28) of stroke patients with IBE for a total of ten treatments (five times a week for 2 weeks). Bladder diaries, which included the spontaneous voiding and PVR urine volumes, were recorded during the course of treatment.
The presence of IBE was not related to sex, history of diabetes mellitus, stroke type (hemorrhagic or ischemic), or stroke location (P > 0.05). Among the 49 patients in the study, nine (18%) had IBE, and seven of the stroke patients with IBE were treated with EA. Increased spontaneous voiding volume and decreased PVR urine volume were noted after ten sessions of EA.
EA may have beneficial effects on stroke survivors with IBE, thereby making it a potential safe modality with which to improve urinary function.
PMCID: PMC3496194  PMID: 23152677
acupuncture; electroacupuncture; incomplete bladder emptying; rehabilitation; stroke; urinary retention
6.  Mechanical pain sensitivity of deep tissues in children - possible development of myofascial trigger points in children 
It is still unclear when latent myofascial trigger points (MTrPs) develop during early life. This study is designed to investigate the mechanical pain sensitivity of deep tissues in children in order to see the possible timing of the development of latent MTrPs and attachment trigger points (A-TrPs) in school children.
Five hundreds and five healthy school children (age 4- 11 years) were investigated. A pressure algometer was used to measure the pressure pain threshold (PPT) at three different sites in the brachioradialis muscle: the lateral epicondyle at elbow (site A, assumed to be the A-TrP site), the mid-point of the muscle belly (site B, assumed to be the MTrP site), and the muscle-tendon junction as a control site (site C).
The results showed that, for all children in this study, the mean PPT values was significantly lower (p < 0.05) at the assumed A-TrP site (site A) than at the other two sites, and was significantly lower (p < 0.05) at the assumed MTrP site (site B) than at the control site (site C). These findings are consistent if the data is analyzed for different genders, different dominant sides, and different activity levels.
It is concluded that a child had increased sensitivity at the tendon attachment site and the muscle belly (endplate zone) after age of 4 years. Therefore, it is likely that a child may develop an A-Trp and a latent MTrP at the brachioradialis muscle after the age of 4 years. The changes in sensitivity, or the development for these trigger points, may not be related to the activity level of children aged 7-11 years. Further investigation is still required to indentify the exact timing of the initial occurrence of a-Trps and latent MTrPs.
PMCID: PMC3298468  PMID: 22316064
myofascial trigger points; children; pressure pain threshold; algometry
7.  Hyaluronan modulates accumulation of hypoxia-inducible factor-1 alpha, inducible nitric oxide synthase, and matrix metalloproteinase-3 in the synovium of rat adjuvant-induced arthritis model 
Hypoxia is a feature of the inflamed synovium in rheumatoid arthritis (RA). Intra-articular injection of hyaluronan (HA) may be considered a potential way to treat RA. However, the exact molecular mechanism of HA on decreased cellular responses to hypoxic environment is unclear. The present study has been designed to use the adjuvant-induced arthritis model to examine the effects of HA on the changes of immunohistochemical expressions of hypoxia-inducible factor-1alpha (HIF-1alpha), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-3 (MMP3) in the synovial tissues at the early phase of arthritic inflammation.
Monoarthritis was induced in adult male Sprague-Dawley (250-300 g) via intraarticular injection of complete Freund's adjuvant (CFA) into the tibiotarsal joint. The CFA-induction arthritis animals were divided into three groups: treatment (intraarticular injection of HA), placebo (intraarticular injection of saline) and controls (no treatments). Functional evaluations of edema and pain behavior, histology, and HIF-1alpha, iNOS, and MMP3 immunohistochemistry were performed before, after the first injection, three injections, and on the follow-up injection of the treatments.
Intra-articular injection of HA also significantly suppressed the mechanical allodynia (p < 0.001) and overexpressions of HIF-1alpha (p < 0.001), iNOS (p = 0.004) and MMP3 (p < 0.001) immunoreactivity in synovium.
This study demonstrated that early intervention of HA is an effective protection against accumulation of inflammation-induced HIF-1alpha, iNOS, and MMP3 to limit erosive damage in CFA-induced model of arthritis.
PMCID: PMC3218905  PMID: 21679445

Results 1-7 (7)