Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Surgeons' Exposure to Radiation in Single- and Multi-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion; A Prospective Study 
PLoS ONE  2014;9(4):e95233.
Although minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) has widely been developed in patients with lumbar diseases, surgeons risk exposure to fluoroscopic radiation. However, to date, there is no studies quantifying the effective dose during MIS-TLIF procedure, and the radiation dose distribution is still unclear. In this study, the surgeons' radiation doses at 5 places on the bodies were measured and the effective doses were assessed during 31 consecutive 1- to 3-level MIS-TLIF surgeries. The operating surgeon, assisting surgeon, and radiological technologist wore thermoluminescent dosimeter on the unshielded thyroid, chest, genitals, right middle finger, and on the chest beneath a lead apron. The doses at the lens and the effective doses were also calculated. Mean fluoroscopy times were 38.7, 53.1, and 58.5 seconds for 1, 2, or 3 fusion levels, respectively. The operating surgeon's mean exposures at the lens, thyroid, chest, genitals, finger, and the chest beneath the shield, respectively, were 0.07, 0.07, 0.09, 0.14, 0.32, and 0.05 mSv in 1-level MIS-TLIF; 0.07, 0.08, 0.09, 0.18, 0.34, and 0.05 mSv in 2-level; 0.08, 0.09, 0.14, 0.15, 0.36, and 0.06 mSv in 3-level; and 0.07, 0.08, 0.10, 0.15, 0.33, and 0.05 mSv in all cases. Mean dose at the operating surgeon's right finger was significantly higher than other measurements parts (P<0.001). The operating surgeon's effective doses (0.06, 0.06, and 0.07 mSv for 1, 2, and 3 fusion levels) were low, and didn't differ significantly from those of the assisting surgeon or radiological technologist. Revision MIS-TLIF was not associated with higher surgeons' radiation doses compared to primary MIS-TLIF. There were significantly higher surgeons' radiation doses in over-weight than in normal-weight patients. The surgeons' radiation exposure during MIS-TLIF was within the safe level by the International Commission on Radiological Protection's guidelines. The accumulated radiation exposure, especially to surgeon's hands, should be carefully monitored.
PMCID: PMC3988176  PMID: 24736321
2.  Comparative study of spinopelvic sagittal alignment between patients with and without degenerative spondylolisthesis 
European Spine Journal  2012;21(11):2181-2187.
To date, few studies have focused on spinopelvic sagittal alignment as a predisposing factor for the development of degenerative spondylolisthesis (DS). The objectives of this study were to compare differences in spinopelvic sagittal alignment between patients with or without DS and to elucidate factors related to spinopelvic sagittal alignment.
Materials and methods
A total of 100 patients with or without DS who underwent surgery for lumbar spinal canal stenosis were assessed in this study. Fifty patients with DS (DS group) and 50 age- and gender-matched patients without DS (non-DS group) were enrolled. Spinopelvic parameters including pelvic incidence (PI), sacral slope (SS), pelvic tilt (PT), L4 slope, L5 slope, thoracic kyphosis (TK), lumbar lordosis (LL) and sagittal balance were compared between the two groups. In the DS group, the percentage of vertebral slip (% slip) was also measured.
Several spinopelvic parameters, PI, SS, L4 slope, L5 slope, TK and LL, in the DS group were significantly greater than those in the non-DS group, and PI had positive correlation with % slip (r = 0.35, p < 0.05). Degrees of correlations among spinopelvic parameters differed between the two groups. In the DS group, PI was more strongly correlated with SS (r = 0.82, p < 0.001) than with PT (r = 0.41, p < 0.01). In the non-DS group, PI was more strongly correlated with PT (r = 0.73, p < 0.001) than with SS (r = 0.38, p < 0.01).
Greater PI may lead to the development and the progression of vertebral slip. Different compensatory mechanisms may contribute to the maintenance of spinopelvic sagittal alignment in DS and non-DS patients.
PMCID: PMC3481103  PMID: 22639298
Spinopelvic sagittal alignment; Pelvic incidence; Lumbar spinal canal stenosis; Degenerative spondylolisthesis; Percentage of vertebral slip
3.  Updates on surgical treatments for pediatric scoliosis 
Scoliosis in children poses serious problems including respiratory problems, trunk imbalance, and depression, as well as detracting from the child’s appearance. Scoliosis can also contribute to back pain later in life. Advanced surgical techniques allow for good correction and maintenance of progressive curves, and growth-sparing treatments are now available for patients with early-onset scoliosis (EOS). Posterior corrective surgeries using pedicle screw (PS) constructs, which allow curves to be corrected in three dimensions, has become the most popular surgical treatment for scoliosis. Several navigation systems and probes have been developed to aid in accurate PS placement. For thoracolumbar and lumbar curves, anterior surgery remains the method of choice. Growth-sparing techniques for treating EOS include growing rods, the Shilla method, anterior stapling, and vertical expandable prosthetic titanium rib, which was originally designed to treat thoracic insufficiency syndrome. However, these advanced surgical techniques do not always offer a perfect solution for pediatric scoliosis, and they are associated with complications such as infections and problems with instrumentation. Surgeons have developed several techniques in efforts to address these complications. We here review historic and recent advances in the surgical treatment of scoliosis in children, the problems associated with various techniques, and the challenges that remain to be overcome.
PMCID: PMC3929026  PMID: 24132791
4.  Increase in spinal longitudinal length by correction surgery for adolescent idiopathic scoliosis 
European Spine Journal  2012;21(10):1920-1925.
One of the downsides of spinal correction surgery for adolescent idiopathic scoliosis (AIS) is the cessation of spinal longitudinal growth within the fused levels in growing children. However, the surgery itself has the potential to increase spinal longitudinal length by correcting the curvature. The purpose of this study was to evaluate the correlation between curve correction and increased spinal longitudinal length by corrective surgery for AIS.
This study included 208 consecutive patients (14 male, 194 female) with AIS who underwent posterior or anterior correction and fusion surgeries. Mean age at the time of surgery was 15.7 ± 3.3 years (range 10–20 years). Patients with hyperkyphosis of more than 40° were excluded. All patients had main curves in the thoracic spine (Lenke type 1 or 2). Forty-three patients underwent anterior spinal correction and fusion (ASF) and 164 underwent posterior spinal correction and fusion (PSF). The mean preoperative height was 154.7 ± 6.9 cm (range 133–173 cm). Pre and postoperative PA standing X-ray films were used to measure the Cobb angle and spinal length between the end vertebrae of the main thoracic curve, and between T1 and L5. The patients were divided into ASF and PSF groups, within which correlations between the Cobb angle correction and spinal length increase were evaluated.
In the ASF group, the mean preoperative Cobb angle of the main thoracic curve was 54.9 ± 8.3° (range 41–83°) and it was corrected to 19.7 ± 9.5° (range 0–47°) with a mean correction of 35.2 ± 11.1° (range 10–74°) after surgery. The mean increase in the length of the main thoracic curve was 1.5 ± 4.6 mm (range −8 to 13 mm), and the mean increase in T1–L5 length was 16.6 ± 7.7 mm (range −3 to 51 mm). Significant correlation between the correction of the Cobb angle and increase in T1–L5 length was observed, with a correlation coefficient of 0.44. In the PSF group, the mean preoperative Cobb angle of the main thoracic curve was 58.8 ± 11.6° (range 36–107°) and it was corrected to 17.1 ± 7.6° (range 10–49°), with a mean correction of 41.7 ± 10.2° (range 21–73°) after surgery. The mean increase in the length of the main thoracic curve was 14.0 ± 5.2 mm (range 0–42 mm), and the mean increase in T1–L5 length was 32.4 ± 10.8 mm (10–61 mm). Correlation between the correction of the Cobb angle and increase in T1–L5 length was high, with a correlation coefficient of 0.64. The increase in T1–L5 length could be calculated by the following formula based on linear regression analysis: increase in T1–L5 length (mm) = correction of the Cobb angle (º) × 0.77.
Spinal longitudinal length was significantly increased after surgery in both the ASF and PSF groups. Correction of the Cobb angle and increase in T1–L5 length were highly correlated with each other, especially in the PSF group.
PMCID: PMC3463697  PMID: 22310882
Adolescent idiopathic scoliosis; Posterior correction with fusion surgery; Anterior correction with fusion surgery; Spinal length
5.  Loss of apical vertebral derotation in adolescent idiopathic scoliosis: 2-year follow-up using multi-planar reconstruction computed tomography 
European Spine Journal  2012;21(6):1111-1120.
The objective of this study was to evaluate 2 years post-surgical loss of three-dimensional correction in adolescent idiopathic scoliosis (AIS) patients using multi-planar reconstruction computed tomography (CT).
Twenty-seven AIS patients treated by segmental pedicle screw (PS) constructs were included in this study. Correction in the axial plane was evaluated using the “relative apical vertebral rotation angle” (rAVR), defined as the difference between the axial rotation angles of the upper instrumented vertebra and the apical vertebra on reconstructed axial CT images. The Cobb angle of the main curve and apical vertebral translation was measured to evaluate the coronal correction. Thoracic kyphosis was also measured for the evaluation of sagittal profile. Measurements were performed before surgery, and 1 week and 2 years after surgery. The relationships between the correction losses and skeletal maturity, and variety of spinal constructs were also evaluated.
The mean preoperative Cobb angle of the major curve was 59.1° ± 11.2° before and 13.0° ± 7.2° immediately after surgery. Two years later, the mean Cobb angle had increased significantly, to 15.5° ± 7.8°, with a mean correction loss of 2.5° ± 1.5° (p < 0.001). The mean preoperative rAVR of 28.5° ± 8.4° was corrected to 15.8° ± 7.8° after surgery. It had increased significantly to 18.5 ± 8.4 by 2 years after surgery, with a mean correction loss of 2.7° ± 1.0° (p < 0.001). The mean correction losses for both the Cobb angle and rAVR were significantly greater in the skeletally immature patients. The significant correlations were recognized between the correction losses and the proportion of multi-axial screws, and the materials of constructs.
Statistically significant loss of correction in the Cobb angle and apical vertebral axial rotation angle (AVR) were recognized 2 years after surgery using PS constructs. The correction losses, especially AVR, were more evident in the skeletally immature patients, and in patients treated with more multi-axial screws and with titanium constructs rather than with stainless constructs.
PMCID: PMC3366141  PMID: 22438165
Adolescent idiopathic scoliosis; Apical vertebral rotation; Correction loss; Coronal correction
6.  Acute respiratory failure due to hemothorax after posterior correction surgery for adolescent idiopathic scoliosis: a case report 
Although posterior correction and fusion surgery using pedicle screws carries the risk of vascular injury, a massive postoperative hemothorax in a patient with adolescent idiopathic scoliosis (AIS) is quite rare. We here report a case of a 12-year-old girl with AIS who developed a massive postoperative hemothorax.
Case presentation
The patient had a double thoracic curve with Cobb angles of 63° at T2-7 and 54° at T7-12. Posterior correction and fusion surgery was performed using a segmental pedicle screw construct placed between T2 and T12. Although the patient's respiration was stable during the surgery, 20 minutes after removing the trachea tube, the patient’s pulse oximetry oxygen saturation suddenly decreased to 80%. A contrast CT scan showed a massive left hemothorax, and a drainage tube was quickly inserted into the chest. The patient was re-intubated and a positive end-expiratory pressure of 5 cmH2O applied, which successfully stopped the bleeding. The patient was extubated 4 days after surgery without incident. Based on contrast CT scans, it was suspected that the hemothorax was caused by damage to the intercostal arteries or branches during pedicle probing on the concave side of the upper thoracic curve. Extensive post-surgical blood tests, echograms, and CT and MRI radiographs did not detect coagulopathy, pulmonary or vascular malformation, or any other possible causative factors.
This case underscores the potential risk of massive hemothorax related to thoracic pedicle screw placement, and illustrates that for this serious complication, respiratory management with positive airway pressure, along with a chest drainage tube, can be an effective treatment option.
PMCID: PMC3636110  PMID: 23577922
7.  Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine 
The purpose of this study was to test the hypothesis that direct vertebral derotation by pedicle screws (PS) causes hypokyphosis of the thoracic spine in adolescent idiopathic scoliosis (AIS) patients, using computer simulation.
Twenty AIS patients with Lenke type 1 or 2 who underwent posterior correction surgeries using PS were included in this study. Simulated corrections of each patient’s scoliosis, as determined by the preoperative CT scan data, were performed on segmented 3D models of the whole spine. Two types of simulated extreme correction were performed: 1) complete coronal correction only (C method) and 2) complete coronal correction with complete derotation of vertebral bodies (C + D method). The kyphosis angle (T5-T12) and vertebral rotation angle at the apex were measured before and after the simulated corrections.
The mean kyphosis angle after the C + D method was significantly smaller than that after the C method (2.7 ± 10.0° vs. 15.0 ± 7.1°, p < 0.01). The mean preoperative apical rotation angle of 15.2 ± 5.5° was completely corrected after the C + D method (0°) and was unchanged after the C method (17.6 ± 4.2°).
In the 3D simulation study, kyphosis was reduced after complete correction of the coronal and rotational deformity, but it was maintained after the coronal-only correction. These results proved the hypothesis that the vertebral derotation obtained by PS causes hypokyphosis of the thoracic spine.
PMCID: PMC3441743  PMID: 22691717
8.  Severe progressive scoliosis due to huge subcutaneous cavernous hemangioma: A case report 
Scoliosis  2011;6:3.
Cavernous hemangioma consists mainly of congenital vascular malformations present before birth and gradually increasing in size with skeletal growth. A small number of patients with cavernous hemangioma develop scoliosis, and surgical treatment for the scoliosis in such cases has not been reported to date. Here we report a 12-year-old male patient with severe progressive scoliosis due to a huge subcutaneous cavernous hemangioma, who underwent posterior correction and fusion surgery. Upon referral to our department, radiographs revealed a scoliosis of 85° at T6-L1 and a kyphosis of 58° at T4-T10. CT and MR images revealed a huge hemangioma extending from the subcutaneous region to the paraspinal muscles and the retroperitoneal space and invading the spinal canal. Posterior correction and fusion surgery using pedicle screws between T2 and L3 were performed. Massive hemorrhage from the hemangioma occurred during the surgery, with intraoperative blood loss reaching 2800 ml. The scoliosis was corrected to 59°, and the kyphosis to 45° after surgery. Seven hours after surgery, the patient suffered from hypovolemic shock and disseminated intravascular coagulation due to postoperative hemorrhage from the hemangioma. The patient developed sensory and conduction aphasia caused by cerebral hypoxia during the shock on the day of the surgery. At present, two years after the surgery, although the patient has completely recovered from the aphasia. This case illustrates that, in correction surgery for scoliosis due to huge subcutaneous cavernous hemangioma, intraoperative and postoperative intensive care for hemodynamics should be performed, since massive hemorrhage can occur during the postoperative period as well as the intraoperative period.
PMCID: PMC3065437  PMID: 21414205
9.  Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells 
Stromal derived factor-1 (SDF-1) is a chemokine signaling molecule that binds to its transmembrane receptor CXC chemokine receptor-4 (CXCR4). While we previously detected that SDF-1 was co-required with bone morphogenetic protein 2 (BMP2) for differentiating mesenchymal C2C12 cells into osteoblastic cells, it is unknown whether SDF-1 is similarly involved in the osteogenic differentiation of mesenchymal stem cells (MSCs). Therefore, here we examined the role of SDF-1 signaling during BMP2-induced osteogenic differentiation of primary MSCs that were derived from human and mouse bone marrow. Our data showed that blocking of the SDF-1/CXCR4 signal axis or adding SDF-1 protein to MSCs significantly affected BMP2-induced alkaline phosphatase (ALP) activity and osteocalcin (OCN) synthesis, markers of preosteoblasts and mature osteoblasts, respectively. Moreover, disrupting the SDF-1 signaling impaired bone nodule mineralization during terminal differentiation of MSCs. Furthermore, we detected that blocking of the SDF-1 signaling inhibited the BMP2-induced early expression of Runt-related factor-2 (Runx2) and osterix (Osx), two “master” regulators of osteogenesis, and the SDF-1 effect was mediated via intracellular Smad and Erk activation. In conclusion, our results demonstrated a regulatory role of SDF-1 in BMP2-induced osteogenic differentiation of MSCs, as perturbing the SDF-1 signaling affected the differentiation of MSCs towards osteoblastic cells in response to BMP2 stimulation. These data provide novel insights into molecular mechanisms underlying MSC osteogenesis, and will contribute to the development of MSC therapies for enhancing bone formation and regeneration in broad orthopaedic situations.
PMCID: PMC2992806  PMID: 20362069
Bone morphogenetic protein 2; CXC chemokine receptor-4; Mesenchymal stem cell; Osteogenic differentiation; Stromal derived factor-1
10.  DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells 
Osteoclasts are bone-resorbing cells that play a pivotal role in bone remodeling. Osteoclasts form large multinuclear giant cells by fusion of mononuclear osteoclasts. How cell fusion is mediated, however, is unclear. We identify the dendritic cell–specific transmembrane protein (DC-STAMP), a putative seven-transmembrane protein, by a DNA subtraction screen between multinuclear osteoclasts and mononuclear macrophages. DC-STAMP is highly expressed in osteoclasts but not in macrophages. DC-STAMP–deficient mice were generated, and osteoclast cell fusion was completely abrogated in homozygotes despite normal expression of osteoclast markers and cytoskeletal structure. As osteoclast multinucleation was restored by retroviral introduction of DC-STAMP, loss of cell fusion was directly attributable to a lack of DC-STAMP. Defects in osteoclast multinucleation reduce bone-resorbing activity, leading to osteopetrosis. Similar to osteoclasts, foreign body giant cell formation by macrophage cell fusion was also completely abrogated in DC-STAMP–deficient mice. We have thus identified an essential regulator of osteoclast and macrophage cell fusion, DC-STAMP, and an essential role of osteoclast multinucleation in bone homeostasis.
PMCID: PMC2213087  PMID: 16061724

Results 1-10 (10)