PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("horned, G.")
1.  Ethical Considerations for Planetary Protection in Space Exploration: A Workshop 
Astrobiology  2012;12(11):1017-1023.
Abstract
With the recognition of an increasing potential for discovery of extraterrestrial life, a diverse set of researchers have noted a need to examine the foundational ethical principles that should frame our collective space activities as we explore outer space. A COSPAR Workshop on Ethical Considerations for Planetary Protection in Space Exploration was convened at Princeton University on June 8–10, 2010, to examine whether planetary protection measures and practices should be extended to protect planetary environments within an ethical framework that goes beyond “science protection” per se. The workshop had been in development prior to a 2006 NRC report on preventing the forward contamination of Mars, although it responded directly to one of the recommendations of that report and to several peer-reviewed papers as well. The workshop focused on the implications and responsibilities engendered when exploring outer space while avoiding harmful impacts on planetary bodies. Over 3 days, workshop participants developed a set of recommendations addressing the need for a revised policy framework to address “harmful contamination” beyond biological contamination, noting that it is important to maintain the current COSPAR planetary protection policy for scientific exploration and activities. The attendees agreed that there is need for further study of the ethical considerations used on Earth and the examination of management options and governmental mechanisms useful for establishing an environmental stewardship framework that incorporates both scientific input and enforcement. Scientists need to undertake public dialogue to communicate widely about these future policy deliberations and to ensure public involvement in decision making. A number of incremental steps have been taken since the workshop to implement some of these recommendations. Key Words: Planetary protection—Extraterrestrial life—Life in extreme environments—Environment—Habitability. Astrobiology 12, 1017–1023.
doi:10.1089/ast.2012.0891
PMCID: PMC3698687  PMID: 23095097
2.  Astrobiological Aspects of Mars and Human Presence: Pros and Cons 
Hippokratia  2008;12(Suppl 1):49-52.
After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with regard to planetary protection issues. Therefore, before planning any human exploratory mission, the critical issues concerning human health and wellbeing as well as protection of Mars in its pristine condition need to be investigated.
PMCID: PMC2577400  PMID: 19048093
Mars; Human exploratory missions; Astrobiology; Search for extraterrestrial life
3.  Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions 
Studies in Mycology  2008;61:99-109.
Dried colonies of the Antarctic rock-inhabiting meristematic fungi Cryomyces antarcticus CCFEE 515, CCFEE 534 and C. minteri CCFEE 5187, as well as fragments of rocks colonized by the Antarctic cryptoendolithic community, were exposed to a set of ground-based experiment verification tests (EVTs) at the German Aerospace Center (DLR, Köln, Germany). These were carried out to test the tolerance of these organisms in view of their possible exposure to space conditions outside of the International Space Station (ISS). Tests included single or combined simulated space and Martian conditions. Responses were analysed both by cultural and microscopic methods. Thereby, colony formation capacities were measured and the cellular viability was assessed using live/dead dyes FUN 1 and SYTOX Green. The results clearly suggest a general good resistance of all the samples investigated. C. minteri CCFEE 5187, C. antarcticus CCFEE 515 and colonized rocks were selected as suitable candidates to withstand space flight and long-term permanence in space on the ISS in the framework of the LIchens and Fungi Experiments (LIFE programme, European Space Agency).
doi:10.3114/sim.2008.61.10
PMCID: PMC2610303  PMID: 19287532
Astrobiology; cryptoendolithic community; fungi; ground-based experiments; lithopanspermia; panspermia; space conditions; stress resistance; viability
4.  A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. 
Applied and Environmental Microbiology  1997;63(11):4377-4384.
A genetically controlled luminescent bacterial reporter assay, the SOS lux test, was developed for rapid detection of environmental genotoxins. The bioassay is based on the recombinant plasmid pPLS-1, which was constructed as a derivative of pBR322, carrying the promoterless luxCDABFE genes of Photobacterium leiognathi downstream of a truncated cda gene from ColD with a strong SOS promoter. E. coli recA+ strains containing this construction are inducible to high levels of light production in the presence of substances or agents that cause damage to the DNA of the cells. The light signal, reflecting the SOS-inducing potency, is recorded from the growing culture within 1 s, and the test results are available within 1 to 2 h. Induction of bioluminescence was demonstrated by treatment of E. coli C600(pPLS-1) with 6 genotoxic chemicals (mitomycin C, N-methyl-N'-nitro-N-nitrosoguanidine, nalidixic acid, dimethylsulfate, hydrogen peroxide, and formaldehyde) and with UV and gamma radiation. A clear dose-response relationship was established for all eight genotoxins. The sensitivity of the SOS lux test is similar to that of other bioassays for genotoxicity or mutagenicity, such as the SOS chromotest, umu test, and Ames mutatest. These results indicate that the SOS lux test is potentially useful for the in situ and continuous detection of genotoxins.
PMCID: PMC168758  PMID: 9361425

Results 1-4 (4)