PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Versatile Transformation System That Is Applicable to both Multiple Transgene Expression and Gene Targeting for Thraustochytrids 
A versatile transformation system for thraustochytrids, a promising producer for polyunsaturated fatty acids and fatty acid-derived fuels, was established. G418, hygromycin B, blasticidin, and zeocin inhibited the growth of thraustochytrids, indicating that multiple selectable marker genes could be used in the transformation system. A neomycin resistance gene (neor), driven with an ubiquitin or an EF-1α promoter-terminator from Thraustochytrium aureum ATCC 34304, was introduced into representatives of two thraustochytrid genera, Aurantiochytrium and Thraustochytrium. The neor marker was integrated into the chromosomal DNA by random recombination and then functionally translated into neor mRNA. Additionally, we confirmed that another two genera, Parietichytrium and Schizochytrium, could be transformed by the same method. By this method, the enhanced green fluorescent protein was functionally expressed in thraustochytrids. Meanwhile, T. aureum ATCC 34304 could be transformed by two 18S ribosomal DNA-targeting vectors, designed to cause single- or double-crossover homologous recombination. Finally, the fatty acid Δ5 desaturase gene was disrupted by double-crossover homologous recombination in T. aureum ATCC 34304, resulting in an increase of dihomo-γ-linolenic acid (C20:3n-6) and eicosatetraenoic acid (C20:4n-3), substrates for Δ5 desaturase, and a decrease of arachidonic acid (C20:4n-6) and eicosapentaenoic acid (C20:5n-3), products for the enzyme. These results clearly indicate that a versatile transformation system which could be applicable to both multiple transgene expression and gene targeting was established for thraustochytrids.
doi:10.1128/AEM.07129-11
PMCID: PMC3346472  PMID: 22344656
2.  Increase of Eicosapentaenoic Acid in Thraustochytrids through Thraustochytrid Ubiquitin Promoter-Driven Expression of a Fatty Acid Δ5 Desaturase Gene▿† 
Applied and Environmental Microbiology  2011;77(11):3870-3876.
Thraustochytrids, marine protists known to accumulate polyunsaturated fatty acids (PUFAs) in lipid droplets, are considered an alternative to fish oils as a source of PUFAs. The major fatty acids produced in thraustochytrids are palmitic acid (C16:0), n − 6 docosapentaenoic acid (DPA) (C22:5n − 6), and docosahexaenoic acid (DHA) (C22:6n − 3), with eicosapentaenoic acid (EPA) (C20:5n − 3) and arachidonic acid (AA) (C20:4n − 6) as minor constituents. We attempted here to alter the fatty acid composition of thraustochytrids through the expression of a fatty acid Δ5 desaturase gene driven by the thraustochytrid ubiquitin promoter. The gene was functionally expressed in Aurantiochytrium limacinum mh0186, increasing the amount of EPA converted from eicosatetraenoic acid (ETA) (C20:4n − 3) by the Δ5 desaturase. The levels of EPA and AA were also increased by 4.6- and 13.2-fold in the transgenic thraustochytrids compared to levels in the mock transfectants when ETA and dihomo-γ-linolenic acid (DGLA) (C20:3n − 6) were added to the culture at 0.1 mM. Interestingly, the amount of EPA in the transgenic thraustochytrids increased in proportion to the amount of ETA added to the culture up to 0.4 mM. The rates of conversion and accumulation of EPA were much higher in the thraustochytrids than in baker's yeasts when the desaturase gene was expressed with the respective promoters. This report describes for the first time the finding that an increase of EPA could be accomplished by introducing the Δ5 desaturase gene into thraustochytrids and indicates that molecular breeding of thraustochytrids is a promising strategy for generating beneficial PUFAs.
doi:10.1128/AEM.02664-10
PMCID: PMC3127612  PMID: 21478316
3.  Isolation and Characterization of a Novel Single-Stranded RNA Virus Infectious to a Marine Fungoid Protist, Schizochytrium sp. (Thraustochytriaceae, Labyrinthulea) 
Thraustochytrids are cosmopolitan osmoheterotrophic microorganisms that play important roles as decomposers, producers of polyunsaturated fatty acids, and pathogens of mollusks, especially in coastal ecosystems. SssRNAV, a novel single-stranded RNA (ssRNA) virus infecting the marine fungoid protist Schizochytrium sp. (Labyrinthulea, Thraustochytriaceae) was isolated from the coastal water of Kobe Harbor, Japan, in July 2000, and its basic characteristics were examined. The virus particle is icosahedral, lacks a tail, and is ca. 25 nm in diameter. SssRNAV formed crystalline arrays and random assemblies within the cytoplasm of host cells, and it was also concentrated along the intracellular membrane structures. By means of one-step growth experiments, the lytic cycle and the burst size were estimated to be <8 h and 5.8 × 103 to 6.4 × 104 infectious units per host cell, respectively. SssRNAV had a single molecule of ssRNA that was approximately 10.2 kb long, three major proteins (37, 34, and 32 kDa), and two minor proteins (80 and 18 kDa). Although SssRNAV was considered to have some similarities with invertebrate viruses belonging to the family Dicistroviridae based on its partial nucleotide sequence, further genomic analysis is required to determine the detailed classification and nomenclature of SssRNAV. Our results indicate that viral infection is one of the significant factors controlling the dynamics of thraustochytrids and provide new insights into understanding the ecology of these organisms.
doi:10.1128/AEM.71.8.4516-4522.2005
PMCID: PMC1183295  PMID: 16085844

Results 1-3 (3)