Search tips
Search criteria

Results 1-25 (37)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Reducing the noise in signal detection of adverse drug reactions by standardizing the background: a pilot study on analyses of proportional reporting ratios-by-therapeutic area 
Disproportionality screening analysis is acknowledged as a tool for performing signal detection in databases of adverse drug reactions (ADRs), e.g., in the European Union (EU) Drug Authority setting. The purpose of this study was to explore the possibility of decreasing false-positive signals of disproportionate reporting (SDR) by calculating the proportional reporting ratio (PRR)-by-therapeutic area (TA), while still maintaining the ability to detect relevant SDRs.
In the EudraVigilance (EV) Database, output from PRR calculated with a restricted TA comparator background was compared in detail to output from conventional authority-setting PRR calculations for four drugs: bicalutamide, abiraterone, metformin, and vildagliptin, within the TAs of prostate gland disease and type 2 diabetes mellitus.
ADR reports per investigated drug ranged from 2,400 to 50,000. The PRR-TA’s ability to detect true-positive SDRs (as acknowledged in approved labeling) was increased compared to the conventional PRR, and performed 8–31 % better than a recently proposed stricter EU-SDR definition. The PRR-TA removed false SDRs confounded by disease or disease spill-over by up to 63 %, while retaining/increasing the number of unclassified SDRs relevant for manual validation, and thereby improving the ratio between confounded SDRs (i.e., noise) and unclassified SDRs for all investigated drugs (possible signals).
The performance of the PRR was improved by background restriction with the PRR-TA method; the number of false-positive SDRs decreased, and the ability to detect true-positive SDRs increased, improving the signal-to-noise ratio. Further development and validation of the method is needed within other TAs and databases, and for disproportionality analysis methods.
Electronic supplementary material
The online version of this article (doi:10.1007/s00228-014-1658-1) contains supplementary material, which is available to authorized users.
PMCID: PMC3978377  PMID: 24599513
PRR; Adverse drug reactions; ADR; Signal detection; Pharmacovigilance; Disproportionality analysis
2.  Mortality following Hip Fracture in Men with Prostate Cancer 
PLoS ONE  2013;8(9):e74492.
Hip fractures are associated with increased mortality and are a known adverse effect of androgen deprivation therapy (ADT) for prostate cancer (PCa). It was our aim to evaluate how mortality after hip fracture is modified by PCa and ADT.
PCa dataBase Sweden (PCBaSe 2.0) is based on the National PCa Register and also contains age and county-matched PCa-free men. We selected all men (n = 14,205) who had been hospitalized with a hip fracture between 2006 and 2010; 2,300 men had a prior PCa diagnosis of whom 1,518 (66%) were on ADT prior to date of fracture. Risk of death was estimated with cumulative incidence and standardized mortality ratios (SMRs) to make comparisons with the entire PCa population and the general population.
Cumulative incidences indicated that there was a higher risk of death following a hip fracture for PCa men on ADT than for PCa men not on ADT or PCa-free men, particularly in the first year. The SMRs showed that PCa men on ADT with a hip fracture were 2.44 times more likely to die than the comparison cohort of all PCa men (95%CI: 2.29-2.60). This risk was especially increased during the first month (5.64 (95%CI: 4.16–7.48)). In absolute terms, hip fractures were associated with 20 additional deaths per 1,000 person-years in PCa men not on ADT, but 30 additional deaths per 1,000 person-years for PCa men on ADT, compared to all PCa men.
Hip fractures are associated with higher all-cause mortality in PCa men on ADT than in PCa men not on ADT or PCa-free men, especially within the first three months.
PMCID: PMC3785484  PMID: 24086350
3.  Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control 
BMC Genomics  2013;14:643.
This study focuses on the analysis of miRNAs expression data in a cohort of 181 well characterised breast cancer samples composed primarily of triple-negative (ER/PR/HER2-negative) tumours with associated genome-wide DNA and mRNA data, extensive patient follow-up and pathological information.
We identified 7 miRNAs associated with prognosis in the triple-negative tumours and an additional 7 when the analysis was extended to the set of all ER-negative cases. miRNAs linked to an unfavourable prognosis were associated with a broad spectrum of motility mechanisms involved in the invasion of stromal tissues, such as cell-adhesion, growth factor-mediated signalling pathways, interaction with the extracellular matrix and cytoskeleton remodelling. When we compared different intrinsic molecular subtypes we found 46 miRNAs that were specifically expressed in one or more intrinsic subtypes. Integrated genomic analyses indicated these miRNAs to be influenced by DNA genomic aberrations and to have an overall influence on the expression levels of their predicted targets. Among others, our analyses highlighted the role of miR-17-92 and miR-106b-25, two polycistronic miRNA clusters with known oncogenic functions. We showed that their basal-like subtype specific up-regulation is influenced by increased DNA copy number and contributes to the transcriptional phenotype as well as the activation of oncogenic pathways in basal-like tumours.
This study analyses previously unreported miRNA, mRNA and DNA data and integrates these with pathological and clinical information, from a well-annotated cohort of breast cancers enriched for triple-negative subtypes. It provides a conceptual framework, as well as integrative methods and system-level results and contributes to elucidate the role of miRNAs as biomarkers and modulators of oncogenic processes in these types of tumours.
PMCID: PMC4008358  PMID: 24059244
miRNAs; Breast cancer; Data integration; Pathway analysis
4.  Results From the Scandinavian Prostate Cancer Group Trial Number 4: A Randomized Controlled Trial of Radical Prostatectomy Versus Watchful Waiting 
In the Scandinavian Prostate Cancer Group Trial Number 4 (SPCG-4), 347 men were randomly assigned to radical prostatectomy and 348 to watchful waiting. In the most recent analysis (median follow-up time = 12.8 years), the cumulative mortality curves had been stable over the follow-up. At 15 years, the absolute risk reduction of dying from prostate cancer was 6.1% following randomization to radical prostatectomy, compared with watchful waiting. Hence, 17 need to be randomized to operation to avert one death. Data on self-reported symptoms, stress from symptoms, and quality of life were collected at 4 and 12.2 years of median follow-up. These questionnaire studies show an intricate pattern of symptoms evolving after surgery, hormonal treatments, signs of tumor progression, and also from natural aging. This article discusses some of the main findings of the SPCG-4 study.
PMCID: PMC3540876  PMID: 23271778
5.  Individualized Estimation of the Benefit of Radical Prostatectomy from the Scandinavian Prostate Cancer Group Randomized Trial 
European Urology  2012;62(2):204-209.
Although there is randomized evidence that radical prostatectomy improves survival, there are few data on how benefit varies by baseline risk.
We aimed to create a statistical model to calculate the decrease in risk of death associated with surgery for an individual patient, using stage, grade, prostate-specific antigen, and age as predictors.
Design, setting, and participants
A total of 695 men with T1 or T2 prostate cancer participated in the Scandinavian Prostate Cancer Group 4 trial (SPCG-4).
Patients in SPCG-4 were randomized to radical prostatectomy or conservative management.
Outcome measurements and statistical analysis
Competing risk models were created separately for the radical prostatectomy and the watchful waiting group, with the difference between model predictions constituting the estimated benefit for an individual patient.
Results and limitations
Individualized predictions of surgery benefit varied widely depending on age and tumor characteristics. At 65 yr of age, the absolute 10-yr risk reduction in prostate cancer mortality attributable to radical prostatectomy ranged from 4.5% to 17.2% for low- versus high-risk patients. Little expected benefit was associated with surgery much beyond age 70. Only about a quarter of men had an individualized benefit within even 50% of the mean. A limitation is that estimates from SPCG-4 have to be applied cautiously to contemporary patients.
Our model suggests that it is hard to justify surgery in patients with Gleason 6, T1 disease or in those patients much above 70 yr of age. Conversely, surgery seems unequivocally of benefit for patients who have Gleason 8, or Gleason 7, stage T2. For patients with Gleason 6 T2 and Gleason 7 T1, treatment is more of a judgment call, depending on patient preference and other clinical findings, such as the number of positive biopsy cores and comorbidities.
PMCID: PMC3389180  PMID: 22541389
Prostatic neoplasms; Statistics and research design; Randomized controlled trial; Prostatectomy
6.  Evaluation of Prediction Models for Decision-Making: Beyond Calibration and Discrimination 
PLoS Medicine  2013;10(7):e1001491.
Lars Holmberg and Andrew Vickers discuss the importance of ensuring prediction models lead to better decision making in light of new research into breast, endometrial, and ovarian cancer risk by Ruth Pfeiffer and colleagues.
Please see later in the article for the Editors' Summary
PMCID: PMC3728013  PMID: 23935462
7.  Serum calcium and risk of gastrointestinal cancer in the Swedish AMORIS study 
BMC Public Health  2013;13:663.
Observational studies have indicated that high calcium intake may prevent colorectal cancer, but as for randomized trials the results are inconclusive. Meanwhile, limited data on the link between serum calcium and cancer risk is available. We investigated the relation between serum calcium and risk of different gastrointestinal cancers in a prospective study.
A cohort based on 492,044 subjects with baseline information on calcium (mmol/L) and albumin (g/L) was selected from the Swedish Apolipoprotein MOrtality RISk (AMORIS) study. Multivariable Cox proportional hazard models were used to analyse associations between standardised levels, quartiles and age/sex-specific categories of serum calcium and risk of oesophageal, stomach, colon, rectal cancer and also colorectal cancer combined, while taking into account serum albumin and other comorbidities.
During 12 years of follow-up, we identified 323 incident oesophageal cancers, 782 stomach cancers, 2519 colon cancers, and 1495 rectal cancers. A positive association was found between albumin-adjusted serum calcium and risk of oesophageal [HR: 4.82 (95% CI: 2.07 – 11.19) for high compared to normal age-specific calcium levels] and colon cancer [e.g. HR: 1.07 (95% CI: 1.00 – 1.14) for every SD increase of calcium] as well as colorectal cancer [e.g. HR: 1.06 (95% CI: 1.02-1.11) for every SD increase of calcium] in women. In men there were similar but weaker non-statistically significant trends.
The positive relation between serum calcium, oesophageal cancer and colorectal cancer calls for further studies including calcium regulators to evaluate whether there is a true link between calcium metabolism and development of gastrointestinal cancer.
PMCID: PMC3729677  PMID: 23866097
Gastrointestinal cancer; Calcium; Albumin
8.  Inorganic phosphate and the risk of cancer in the Swedish AMORIS study 
BMC Cancer  2013;13:257.
Both dietary and serum levels of inorganic phosphate (Pi) have been linked to development of cancer in experimental studies. This is the first population-based study investigating the relation between serum Pi and risk of cancer in humans.
From the Swedish Apolipoprotein Mortality Risk (AMORIS) study, we selected all participants (> 20 years old) with baseline measurements of serum Pi, calcium, alkaline phosphatase, glucose, and creatinine (n = 397,292). Multivariable Cox proportional hazards regression analyses were used to assess serum Pi in relation to overall cancer risk. Similar analyses were performed for specific cancer sites.
We found a higher overall cancer risk with increasing Pi levels in men ( HR: 1.02 (95% CI: 1.00-1.04) for every SD increase in Pi), and a negative association in women (HR: 0.97 (95% CI: 0.96-0.99) for every SD increase in Pi). Further analyses for specific cancer sites showed a positive link between Pi quartiles and the risk of cancer of the pancreas, lung, thyroid gland and bone in men, and cancer of the oesophagus, lung, and nonmelanoma skin cancer in women. Conversely, the risks for developing breast and endometrial cancer as well as other endocrine cancer in both men and women were lower in those with higher Pi levels.
Abnormal Pi levels are related to development of cancer. Furthermore, the in verse association between Pi levels and risk of breast, endometrial and other endocrine cancers may indicate the role of hormonal factors in the relation between Pi metabolism and cancer.
PMCID: PMC3664604  PMID: 23706176
Cancer; Inorganic phosphate; Prospective cohort study
9.  Iron metabolism and risk of cancer in the Swedish AMORIS study 
Cancer Causes & Control  2013;24(7):1393-1402.
Pre-clinical studies have shown that iron can be carcinogenic, but few population-based studies investigated the association between markers of the iron metabolism and risk of cancer while taking into account inflammation. We assessed the link between serum iron (SI), total-iron binding capacity (TIBC), and risk of cancer by levels of C-reactive protein (CRP) in a large population-based study (n = 220,642).
From the Swedish Apolipoprotein Mortality Risk (AMORIS) study, we selected all participants (>20 years old) with baseline measurements of serum SI, TIBC, and CRP. Multivariate Cox proportional hazards regression was carried out for standardized and quartile values of SI and TIBC. Similar analyses were performed for specific cancers (pancreatic, colon, liver, respiratory, kidney, prostate, stomach, and breast cancer). To avoid reverse causation, we excluded those with follow-up <3 years.
We found a positive association between standardized TIBC and overall cancer [HR 1.03 (95 % CI 1.01–1.05)]. No statistically significant association was found between SI and cancer risk except for postmenopausal breast cancer [HR for standardized SI 1.09 (95 % CI 1.02–1.15)]. The association between TIBC and specific cancer was only statistically significant for colon cancer [i.e., HR for standardized TIBC: 1.17 (95 % CI 1.08–1.28)]. A borderline interaction between SI and levels of CRP was observed only in stomach cancer.
As opposed to pre-clinical findings for serum iron and cancer, this population-based epidemiological study showed an inverse relation between iron metabolism and cancer risk. Minimal role of inflammatory markers observed warrants further study focusing on developments of specific cancers.
PMCID: PMC3675271  PMID: 23649231
Cancer; C-reactive protein; Iron; Iron-binding capacity; Sweden
10.  Serum Glucose and Fructosamine in Relation to Risk of Cancer 
PLoS ONE  2013;8(1):e54944.
Impaired glucose metabolism has been linked with increased cancer risk, but the association between serum glucose and cancer risk remains unclear. We used repeated measurements of glucose and fructosamine to get more insight into the association between the glucose metabolism and risk of cancer.
We selected 11,998 persons (>20 years old) with four prospectively collected serum glucose and fructosamine measurements from the Apolipoprotein Mortality Risk (AMORIS) study. Multivariate Cox proportional hazards regression was used to assess standardized log of overall mean glucose and fructosamine in relation to cancer risk. Similar analyses were performed for tertiles of glucose and fructosamine and for different types of cancer.
A positive trend was observed between standardized log overall mean glucose and overall cancer risk (HR = 1.08; 95% CI: 1.02–1.14). Including standardized log fructosamine in the model resulted in a stronger association between glucose and cancer risk and aninverse association between fructosamine and cancer risk (HR = 1.17; 95% CI: 1.08–1.26 and HR: 0.89; 95% CI: 0.82–0.96, respectively). Cancer risks were highest among those in the highest tertile of glucose and lowest tertile of fructosamine. Similar findings were observed for prostate, lung, and colorectal cancer while none observed for breast cancer.
The contrasting effect between glucose, fructosamine, and cancer risk suggests the existence of distinct groups among those with impaired glucose metabolism, resulting in different cancer risks based on individual metabolic profiles. Further studies are needed to clarify whether glucose is a proxy of other lifestyle-related or metabolic factors.
PMCID: PMC3556075  PMID: 23372798
11.  Serum Lipid Profiles and Cancer Risk in the Context of Obesity: Four Meta-Analyses 
Journal of Cancer Epidemiology  2013;2013:823849.
The objective here was to summarize the evidence for, and quantify the link between, serum markers of lipid metabolism and risk of obesity-related cancers. PubMed and Embase were searched using predefined inclusion criteria to conduct meta-analyses on the association between serum levels of TG, TC, HDL, ApoA-I, and risk of 11 obesity-related cancers. Pooled relative risks (RRs) and 95% confidence intervals were estimated using random-effects analyses. 28 studies were included. Associations between abnormal lipid components and risk of obesity-related cancers when using clinical cutpoints (TC ≥ 6.50; TG ≥ 1.71; HDL ≤ 1.03; ApoA-I ≤ 1.05 mmol/L) were apparent in all models. RRs were 1.18 (95% CI: 1.08–1.29) for TC, 1.20 (1.07–1.35) for TG, 1.15 (1.01–1.32) for HDL, and 1.42 (1.17–1.74) for ApoA-I. High levels of TC and TG, as well as low levels of HDL and ApoA-I, were consistently associated with increased risk of obesity-related cancers. The modest RRs suggest serum lipids to be associated with the risk of cancer, but indicate it is likely that other markers of the metabolism and/or lifestyle factors may also be involved. Future intervention studies involving lifestyle modification would provide insight into the potential biological role of lipid metabolism in tumorigenesis.
PMCID: PMC3563167  PMID: 23401687
12.  Gamma-glutamyl transferase and C-reactive protein as alternative markers of metabolic abnormalities and their associated comorbidites: a prospective cohort study 
Background: Recent studies suggested that gamma-glutamyl transferase (GGT) and C-reactive protein (CRP) are good markers of metabolic abnormalities. We assessed the link between GGT, CRP and common metabolic abnormalities, as well their link to related diseases, such as cancer and cardiovascular disease (CVD). Methods: We selected 333,313 subjects with baseline measurements of triglycerides (TG), total cholesterol (TC), glucose, GGT and CRP in the Swedish AMORIS study. Baseline measurement of BMI was available for 63,900 persons and 77,944 had baseline measurements of HDL. Pearson correlation coefficients between CRP, GGT, and metabolic components (TG, HDL, BMI and TC) were calculated. To investigate the combined effect of GGT and CRP we created a score ranging from 0 to 6 and used Cox proportional hazard models to evaluate its association with CVD and cancer. Results: 21,216 individuals developed cancer and 47,939 CVD. GGT and TG had the strongest correlation (r=0.22). An increased risk of cancer was identified with elevated levels of GGT or CRP or both markers (GGT-CRP score ≥3); the greatest risk of cancer was found when GGT-CRP score = 6 (HR: 1.40 (95%CI: 1.31-1.48) and 1.60 (1.47-1.76) compared to GGT-CRP score = 0, respectively). Conclusion: While GGT and CRP have been shown to be associated with metabolic abnormalities previously, their association to the components investigated in this study was limited. Results did demonstrate that these markers were predictive of associated diseases, such as cancer.
PMCID: PMC3508539  PMID: 23205179
GGT; CRP; metabolic abnormalities; cardiovascular disease; cancer
13.  Serum Lipids and the Risk of Gastrointestinal Malignancies in the Swedish AMORIS Study 
Journal of Cancer Epidemiology  2012;2012:792034.
Background. Metabolic syndrome has been linked to an increased cancer risk, but the role of dyslipidaemia in gastrointestinal malignancies is unclear. We aimed to assess the risk of oesophageal, stomach, colon, and rectal cancers using serum levels of lipid components. Methods. From the Swedish Apolipoprotein Mortality Risk (AMORIS) study, we selected 540,309 participants (> 20 years old) with baseline measurements of total cholesterol (TC), triglycerides (TG), and glucose of whom 84,774 had baseline LDL cholesterol (LDL), HDL cholesterol (HDL), apolipoprotein B (apoB), and apolipoprotein A-I (apoA-I). Multivariate Cox proportional hazards regression was used to assess glucose and lipid components in relation to oesophageal, stomach, colon, and rectal cancer risk. Results. An increased risk of oesophageal cancer was observed in persons with high TG (e.g. HR: 2.29 (95% CI: 1.42–3.68) for the 4th quartile compared to the 1st) and low LDL, LDL/HDL ratio, TC/HDL ratio, log (TG/HDL), and apoB/apoA-I ratio. High glucose and TG were linked with an increased colon cancer risk, while high TC levels were associated with an increased rectal cancer risk. Conclusion. The persistent link between TC and rectal cancer risk as well as between TG and oesophageal and colon cancer risk in normoglycaemic individuals may imply their substantiality in gastrointestinal carcinogenesis.
PMCID: PMC3437288  PMID: 22969802
14.  Social differences in lung cancer management and survival in South East England: a cohort study 
BMJ Open  2012;2(3):e001048.
To examine possible social variations in lung cancer survival and assess if any such gradients can be attributed to social differences in comorbidity, stage at diagnosis or treatment.
Population-based cohort identified in the Thames Cancer Registry.
South East England.
15 582 lung cancer patients diagnosed between 2006 and 2008.
Main outcome measures
Stage at diagnosis, surgery, radiotherapy, chemotherapy and survival.
The likelihood of being diagnosed as having early-stage disease did not vary by socioeconomic quintiles (p=0.58). In early-stage non-small-cell lung cancer, the likelihood of undergoing surgery was lowest in the most deprived group. There were no socioeconomic differences in the likelihood of receiving radiotherapy in stage III disease, while in advanced disease and in small-cell lung cancer, receipt of chemotherapy differed over socioeconomic quintiles (p<0.01). In early-stage disease and following adjustment for confounders, the HR between the most deprived and the most affluent group was 1.24 (95% CI 0.98 to 1.56). Corresponding estimates in stage III and advanced disease or small-cell lung cancer were 1.16 (95% CI 1.01 to 1.34) and 1.12 (95% CI 1.05 to 1.20), respectively. In early-stage disease, the crude HR between the most deprived and the most affluent group was approximately 1.4 and constant through follow-up, while in patients with advanced disease or small-cell lung cancer, no difference was detectable after 3 months.
We observed socioeconomic variations in management and survival in patients diagnosed as having lung cancer in South East England between 2006 and 2008, differences which could not fully be explained by social differences in stage at diagnosis, co-morbidity and treatment. The survival observed in the most affluent group should set the target for what is achievable for all lung cancer patients, managed in the same healthcare system.
Article summary
Article focus
Social differences in management and survival in lung cancer patients.
Particular focus on possible social variations in lung cancer survival and assess if any such gradients can be attributed to social differences in co-morbidity, stage at diagnosis or treatment.
Key messages
There were no detectable socioeconomic differences in stage at diagnosis among lung cancer patients in South East England between 2006 and 2008.
Socioeconomic differences in lung cancer management and survival existed. The observed inequalities in survival could not fully be explained by social differences in stage at diagnosis, co-morbidity and treatment factors.
In early-stage disease, social gradients in survival existed throughout follow-up, whereas in advanced disease, variations in survival were confined to the period immediately after diagnosis.
Strengths and limitations of this study
Strengths included the population-based cohort design. The material at hand allowed analyses that accounted for co-morbidity, stage at diagnosis and treatment factors.
Limitations included the absence of data on performance status, forced expiratory volume, smoking history and lifestyle factors.
PMCID: PMC3367157  PMID: 22637374
15.  Lipid profiles and the risk of endometrial cancer in the Swedish AMORIS study 
While the association between obesity and endometrial cancer (EC) is well established, the underlying mechanisms require further study. We assessed possible links between lipid profiles and EC risk, while also taking into account BMI, parity, and menopausal status at baseline.
Using the information available from the Swedish Apolipoprotein MOrtality RISk (AMORIS) study we created a cohort of 225,432 women with baseline values for glucose, triglycerides (TG), and total cholesterol (TC). Two subgroups of 31,792 and 26,317 had, in addition, baseline measurements of HDL, LDL, apolipoprotein A-I and apoB and BMI, respectively. We used Multivariate Cox proportional hazards models to analyze quartiles and dichotomized values of these lipid components for a link to EC risk.
During mean follow-up of 12 years (SD: 4.15), 1,144 persons developed endometrial cancer. A statistically significant association was found between TG and EC risk when using both quartiles and a clinical cut-off (Hazard Ratio (HR): 1.10 (95%CI: 0.88-1.37), 1.34 (1.09-1.63), and 1.57 (1.28-1.92)) for the 2nd, 3rd, and 4th quartile, compared to the 1st, with P-value for trend: <0.001). The association remained after exclusion of the first three years of follow-up. Also total cholesterol and TG/HDL ratio were positively associated with EC risk, but no link was found for the other lipid components studied.
This detailed analysis of lipid components showed a consistent relation between TG levels and EC risk. Future research should continue to analyze the metabolic pathway and its relation to EC risk, as a pathway to further understand the relation of obesity and disease.
PMCID: PMC3376923  PMID: 22724049
Lipid profiles; risk factor; endometrial cancer; Swedish AMORIS study
16.  Biomarker-based score to predict mortality in persons aged 50 years and older: a new approach in the Swedish AMORIS study 
Management of frailty is the cornerstone of geriatric medicine, but there remains a need to identify biomarkers that can predict early death, and thereby lead to effective clinical interventions. We aimed to study the combination of C-reactive protein (CRP), albumin, gamma-glutamyl transferase (GGT), and HDL to predict mortality.
A total of 44,457 persons aged 50+ whose levels of CRP, albumin, GGT, and HDL were measured at baseline were selected from the Swedish Apolipoprotein MOrtality RISk (AMORIS) study. A mortality score, ranging from 0 to 4, was created by adding the number of markers with abnormal values according to the clinical cut-off (CRP > 10 mg/L, albumin < 35 mg/L, GGT > 36 kU/L, HDL < 1.04 mmol/L). Mortality was studied with multivariate Cox proportional hazards models.
2,245 persons died from cancer, 3,276 from circulatory disease, and 1,860 from other causes. There was a positive trend between mortality score and all-cause mortality as well as cancer and circulatory disease-specific death (e.g. HR for all-cause mortality: 1.39 (95%CI: 1.32-1.46), 2.04 (1.89-2.21), and 3.36 (2.87-3.93), for score=1, 2, and 3+, compared to score=0). Among cancer patients with no other co-morbidities (n=1,955), there was a positive trend between the score and mortality (HR: 1.24 (95%CI: 1.0.-1.49), 2.38 (95%CI: 1.76-3.22), and 5.47 (95%CI: 2.98-10.03) for score=1, 2, and 3+ compared to score=0).
By combining biomarkers of different mechanisms contributing to patient frailty, we found a strong marker for mortality in persons aged 50+. Elevated risks among cancer patients with no other co-morbidities prior to biomarker assessment call for validation in other cohorts and testing of different combinations and cut-offs than those used here, in order to aid decision-making in treatment of older cancer patients.
PMCID: PMC3316450  PMID: 22493753
Frailty; mortality; albumin; HDL-cholesterol; C-reactive protein; gamma-glutamyltransferase
17.  The number of women who would need to be screened regularly by mammography to prevent one death from breast cancer 
Journal of Medical Screening  2011;18(4):210-212.
The number of women who would need to be screened regularly by mammography to prevent one death from breast cancer depends strongly on several factors, including the age at which regular screening starts, the period over which it continues, and the duration of follow-up after screening. Furthermore, more women would need to be INVITED for screening than would need to be SCREENED to prevent one death, since not all women invited attend for screening or are screened regularly. Failure to consider these important factors accounts for many of the major discrepancies between different published estimates. The randomised evidence indicates that, in high income countries, around one breast cancer death would be prevented in the long term for every 400 women aged 50–70 years regularly screened over a ten-year period.
PMCID: PMC3266234  PMID: 22184734
18.  Predictors of early death in female patients with breast cancer in the UK: a cohort study 
BMJ Open  2011;1(2):e000247.
To identify factors predicting early death in women with breast cancer.
Cohort study.
29 trusts across seven cancer networks in the North Thames area.
15 037 women with primary breast cancer diagnosed between January 1996 and December 2005.
Logistic regression analyses to determine predictors of early death and factors associated with lack of surgical treatment.
Main exposures
Age at diagnosis, mode of presentation, ethnicity, disease severity, comorbidities, treatment and period of diagnosis in relation to the Cancer Plan (the NHS's strategy in 2000 for investment in and reform of cancer services).
Main outcome measures
Death from any cause within 1 year of diagnosis, and receipt of surgical treatment.
By 31 December 2006, 4765 women had died, 980 in the year after diagnosis. Older age and disease severity independently predicted early death. Women over 80 were more likely to die early than women under 50 (OR 8.05, 95% CI 5.96 to 10.88). Presence of distant metastases on diagnosis increased the odds of early death more than eightfold (OR 8.41, 95% CI 6.49 to 10.89). Two or more recorded comorbidities were associated with a nearly fourfold increase. There was a significant decrease in odds associated with surgery (OR 0.29, 95% CI 0.24 to 0.35). Independently of disease severity and comorbidities, women over 70 were less likely than those under 50 to be treated surgically and this was even more pronounced in those aged over 80 (OR 0.09, 95% CI 0.07 to 0.10). Other factors independently associated with a reduced likelihood of surgery included a non-screening presentation, non-white ethnicity and additional comorbidities.
These findings may partially explain the survival discrepancies between the UK and other European countries in female patients with breast cancer. The study identifies a group of women with a particularly poor prognosis for whom interventions aiming at early detection may be targeted.
Article summary
Article focus
Several studies have shown that the UK has lower survival for breast cancer than some other European countries with a similar expenditure on healthcare.
Differences have been shown to occur mainly in older patients and in the first year after diagnosis.
Several reasons/explanations have been proposed.
Key messages
This study shows that patients with breast cancer dying in the first year after diagnosis are more likely to be older and have more advanced disease and existing comorbidities.
Surgical treatment and (to a lesser extent) radiotherapy and tamoxifen usage were associated with a reduced risk of early death.
The likelihood of receiving surgery was inversely related to age, independently of comorbidity and disease severity.
These findings suggest that early detection, management of comorbidities and optimisation of treatment of older patients are important target areas to improve outcomes.
Strengths and limitations of this study
This is a large cohort of women with a diagnosis of breast cancer, and the results may be generalisable to women treated for breast cancer in the UK during the same time period.
Many variables that may be related to both risk factors and outcomes have not been assessed in this study. However, their correlation with death within a year would have to be very strong to explain the strong associations seen in our data.
PMCID: PMC3227804  PMID: 22123920
19.  Survival endpoints in colorectal cancer and the effect of second primary other cancer on disease free survival 
BMC Cancer  2011;11:438.
In cancer research the selection and definitions of survival endpoints are important and yet they are not used consistently. The aim of this study was to compare different survival endpoints in patients with primary colorectal cancer (CRC) and to understand the effect of second primary other cancer on disease-free survival (DFS) calculations.
A population-based cohort of 415 patients with CRC, 332 of whom were treated with curative intention between the years 2000-2003, was analysed. Events such as locoregional recurrence, distant metastases, second primary cancers, death, cause of death and loss to follow-up were recorded. Different survival endpoints, including DFS, overall survival, cancer-specific survival, relapse-free survival, time to treatment failure and time to recurrence were compared and DFS was calculated with and without inclusion of second primary other cancers.
The events that occurred most often in patients treated with curative intention were non-cancer-related death (n = 74), distant metastases (n = 66) and death from CRC (n = 59). DFS was the survival endpoint with most events (n = 170) followed by overall survival (n = 144) and relapse-free survival (n = 139). Fewer events were seen for time to treatment failure (n = 80), time to recurrence (n = 68) and cancer-specific survival (n = 59). Second primary other cancer occurred in 26 patients and its inclusion as an event in DFS calculations had a detrimental effect on the survival. The DFS for patients with stage I-III disease was 62% after 5 years if second primary other cancer was not included as an event, compared with 58% if it was. However, the difference was larger for stage II (68 vs 60%) than for stage III (49 vs 47%).
The inclusion of second primary other cancer as an endpoint in DFS analyses significantly alters the DFS for patients with CRC. Researchers and journals must clearly define survival endpoints in all trial protocols and published manuscripts.
PMCID: PMC3209454  PMID: 21989154
20.  Serum levels of selenium and smoking habits at age 50 influence long term prostate cancer risk; a 34 year ULSAM follow-up 
BMC Cancer  2011;11:431.
Serum selenium level (s-Se) has been associated with prostate cancer (PrCa) risk. We investigated the relation between s-Se, smoking and non-screening detected PrCa and explored if polymorphisms in two DNA repair genes: OGG1 and MnSOD, influenced any effect of s-Se.
ULSAM, a population based Swedish male cohort (n = 2322) investigated at age 50 for s-Se and s-Se influencing factors: serum cholesterol, erythrocyte sedimentation rate and smoking habits. At age 71 a subcohort, (n = 1005) was genotyped for OGG1 and MnSOD polymorphisms.
In a 34-year-follow-up, national registries identified 208 PrCa cases further confirmed in medical records. Participants with s-Se in the upper tertile had a non-significantly lower risk of PrCa. Smokers with s-Se in the two lower tertiles (≤80 μg/L) experienced a higher cumulative incidence of PrCa than smokers in the high selenium tertile (Hazard Ratio 2.39; 95% CI: 1.09-5.25). A high tertile selenium level in combination with non-wt rs125701 of the OGG1 gene in combination with smoking status or rs4880 related variation of MnSOD gene appeared to protect from PrCa.
S-Se levels and smoking habits influence long-term risk of PrCa. Smoking as a risk factor for PrCa in men with low s-Se is relevant to explore further. Exploratory analyses of variations in OGG1 and MnSOD genes indicate that hypotheses about patterns of exposure to selenium and smoking combined with data on genetic variation in genes involved in DNA repair can be valuable to pursue.
PMCID: PMC3199281  PMID: 21982398
21.  Association between levels of C-reactive protein and leukocytes and cancer: Three repeated measurements in the Swedish AMORIS study 
To study levels of C-reactive protein (CRP) and leukocytes, as inflammatory markers, in the context of cancer risk.
From the Apolipoprotein MOrtality RISk (AMORIS) study, we selected 102,749 persons with one measurement and 9,273 persons with three repeated measurements of CRP and leukocytes. Multivariate Cox proportional hazards regression was applied to categories of CRP (<10, 10-15, 15-25, 25-50, >50 g/L) and quartiles of leukocytes. An Inflammation-based Predictive Score (IPS) indicated whether someone had CRP levels >10mg/L combined with leukocytes >10×109/L. Reverse causality was assessed by excluding those with <3, 5, or 7 years of follow-up. To analyze repeated measurements of CRP and leukocytes the repeated IPS (IPSr) was calculated by adding the IPS of each measurement.
In the cohort with one measurement, there was a positive trend between CRP and cancer, with the lowest category being the reference: 0.99 (0.92-1.06), 1.28 (1.11-1.47), 1.27 (1.09-1.49), 1.22 (1.01-1.48) for the 2nd to 5th categories, respectively. This association disappeared when excluding those with follow-up <3, 5 or 7 years. The association between leukocytes and cancer was slightly stronger. In the cohort with repeated measurements the IPSr was strongly associated with cancer risk: 1.87 (1.33-2.63), 1.51 (0.56-4.06), 4.46 (1.43-13.87) for IPSr =1, 2, and 3, compared to IPSr =0. The association remained after excluding those with follow-up <1 year.
Conclusions and impact
Our large prospective cohort study adds evidence for a link between inflammatory markers and cancer risk by using repeated measurements and ascertaining reverse causality.
PMCID: PMC3078551  PMID: 21297038
cancer; C-reactive protein; leukocytes; Sweden
22.  The metabolic syndrome and the risk of prostate cancer under competing risks of death from other causes 
Associations between Metabolic Syndrome (MetS) components and prostate cancer development have not been studied comprehensively; results have been divergent. Using the National Cholesterol Education Program Adult Treatment panel III (NCEP) and International Diabetes Federation (IDF) definitions of the MetS we investigated such associations taking competing risks of death into consideration.
In the prospective Uppsala Longitudinal Study of Adult Men (ULSAM) of 2322 Caucasian men with 34 years of follow-up baseline MetS-measurements at age 50 were used. Cumulative incidence of prostate cancer and death with/without the MetS were calculated. Competing risk of dying was taken into account by calculating the conditional probability of prostate cancer with/without the MetS.
Two-hundred-and- thirty-seven prostate cancers were identified. Prostate cancer probability by age 80 with baseline MetS compared to without the MetS was non-significantly higher, 5.2 percent-units (CI -0.8%-11.3%, (NCEP), 2.7 percent-units (CI -2.7%-8.0%) (IDF), cumulative incidence proportions of death was significantly higher, 19.3 percent-units (CI 13.4%-25.3%) (NCEP), 15.3 percent-units (CI 9.5%-21.1%) (IDF) and conditional probability of prostate cancer considering death from other causes was significantly higher, 7.3 percent-units (CI 0.2%-14.5%) odds ratio(OR) of 1.64 (CI 1.03-2.23). (NCEP), and non-significantly higher 5.0 percent-units (CI -1.6%-11.6%) OR 1.43 (CI 0.89-1.90). (IDF).
The MetS by the NCEP definition is associated with prostate cancer taking the competing risk of early death from other causes into account.
The results further highlight the public health impact of the increasing prevalence of MetS, and the importance of considering competing risks when studying risk factors for cancer.
PMCID: PMC2923431  PMID: 20647401
epidemiology; prostate cancer; metabolic syndrome; competing risk; risk factors
23.  Development of a New Method for Monitoring Prostate-Specific Antigen Changes in Men with Localised Prostate Cancer: A Comparison of Observational Cohorts 
European urology  2009;57(3):446-452.
Prostate-specific antigen (PSA) measurements are increasingly used to monitor men with localised prostate cancer (PCa), but there is little consensus about the method to use.
To apply age-specific predictions of PSA level (developed in men without cancer) to one cohort of men with clinically identified PCa and one cohort of men with PSA-detected PCa. We hypothesise that among men with clinically identified cancer, the annual increase in PSA level would be steeper than in men with PSA-detected cancer.
Design, setting, and participants
The Scandinavian Prostatic Cancer Group 4 (SPCG-4) cohort consisted of 321 men assigned to the watchful waiting arm of the SPCG-4 trial. The UK cohort consisted of 320 men with PSA-detected PCa in the Prostate Testing for Cancer and Treatment (ProtecT) study in nine UK centres between 1999 and 2007 who opted for monitoring rather than treatment. Multilevel models describing changes in PSA level were fitted to the two cohorts, and average PSA level at age 50, change in PSA level with age, and predicted PSA values were derived.
PSA level.
Results and limitations
In the SPCG-4 cohort, mean PSA at age 50 was similar to the cancer-free cohort but with a steeper yearly increase in PSA level (16.4% vs 4.0%). In the UK cohort, mean PSA level was higher than that in the cancer-free cohort (due to a PSA biopsy threshold of 3.0 ng/ml) but with a similar yearly increase in PSA level (4.1%). Predictions were less accurate for the SPCG-4 cohort (median observed minus predicted PSA level: −2.0 ng/ml; interquartile range [IQR]: −7.6–0.7 ng/ml) than for the UK cohort (median observed minus predicted PSA level: −0.8 ng/ml; IQR: −2.1–0.1 ng/ml).
In PSA-detected men, yearly change in PSA was similar to that in cancer-free men, whereas in men with symptomatic PCa, the yearly change in PSA level was considerably higher. Our method needs further evaluation but has promise for refining active monitoring protocols.
PMCID: PMC2910432  PMID: 19303695
active surveillance; localised prostate cancer; PSA doubling time; PSA velocity; reference ranges
24.  Outcomes in Localized Prostate Cancer: National Prostate Cancer Register of Sweden Follow-up Study 
Treatment for localized prostate cancer remains controversial. To our knowledge, there are no outcome studies from contemporary population-based cohorts that include data on stage, Gleason score, and serum levels of prostate-specific antigen (PSA).
In the National Prostate Cancer Register of Sweden Follow-up Study, a nationwide cohort, we identified 6849 patients aged 70 years or younger. Inclusion criteria were diagnosis with local clinical stage T1–2 prostate cancer from January 1, 1997, through December 31, 2002, a Gleason score of 7 or less, a serum PSA level of less than 20 ng/mL, and treatment with surveillance (including active surveillance and watchful waiting, n = 2021) or curative intent (including radical prostatectomy, n = 3399, and radiation therapy, n = 1429). Among the 6849 patients, 2686 had low-risk prostate cancer (ie, clinical stage T1, Gleason score 2-6, and serum PSA level of <10 ng/mL). The study cohort was linked to the Cause of Death Register, and cumulative incidence of death from prostate cancer and competing causes was calculated.
For the combination of low- and intermediate-risk prostate cancers, calculated cumulative 10-year prostate cancer–specific mortality was 3.6% (95% confidence interval [CI] = 2.7% to 4.8%) in the surveillance group and 2.7% (95% CI = 2.1% to 3.45) in the curative intent group. For those with low-risk disease, the corresponding values were 2.4% (95% CI = 1.2% to 4.1%) among the 1085 patients in the surveillance group and 0.7% (95% CI = 0.3% to 1.4%) among the 1601 patients in the curative intent group. The 10-year risk of dying from competing causes was 19.2% (95% CI = 17.2% to 21.3%) in the surveillance group and 10.2% (95% CI = 9.0% to 11.4%) in the curative intent group.
A 10-year prostate cancer–specific mortality of 2.4% among patients with low-risk prostate cancer in the surveillance group indicates that surveillance may be a suitable treatment option for many patients with low-risk disease.
PMCID: PMC2897875  PMID: 20562373
25.  Risk of thromboembolic diseases in men with prostate cancer: results from the population-based PCBaSe Sweden 
The Lancet Oncology  2010;11(5):450-458.
Cancer is associated with an increased risk of thromboembolic diseases, but data on the association between prostate cancer and thromboembolic diseases are scarce. We investigated the risk of thromboembolic disease in men with prostate cancer who were receiving endocrine treatment, curative treatment, or surveillance.
We analysed data from PCBaSe Sweden, a database based on the National Prostate Cancer Register, which covers over 96% of prostate cancer cases in Sweden. Standardised incidence ratios (SIR) of deep-venous thrombosis (DVT), pulmonary embolism, and arterial embolism were calculated by comparing observed and expected (using the total Swedish male population) occurrences of thromboembolic disease, taking into account age, calendar-time, number of thromboembolic diseases, and time since previous thromboembolic disease.
Between Jan 1, 1997, and Dec 31, 2007, 30 642 men received primary endocrine therapy, 26 432 curative treatment, and 19 526 surveillance. 1881 developed a thromboembolic disease. For men on endocrine therapy, risks for DVT (SIR 2·48, 95% CI 2·25–2·73) and pulmonary embolism (1·95, 1·81–2·15) were increased, although this was not the case for arterial embolism (1·00, 0·82–1·20). Similar patterns were seen for men who received curative treatment (DVT: 1·73, 1·47–2·01; pulmonary embolism: 2·03, 1·79–2·30; arterial embolism: 0·95, 0·69–1·27) and men who were on surveillance (DVT: 1·27, 1·08–1·47; pulmonary embolism: 1·57, 1·38–1·78; arterial embolism: 1·08, 0·87–1·33). Increased risks for thromboembolic disease were maintained when patients were stratified by age and tumour stage.
All men with prostate cancer were at higher risk of thromboembolic diseases, with the highest risk for those on endocrine therapy. Our results indicate that prostate cancer itself, prostate cancer treatments, and selection mechanisms all contribute to increased risk of thromboembolic disease. Thromboembolic disease should be a concern when managing patients with prostate cancer.
Swedish Research Council, Stockholm Cancer Society, and Cancer Research UK.
PMCID: PMC2861771  PMID: 20395174

Results 1-25 (37)