PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Inhibitory circuits for visual processing in thalamus 
Current opinion in neurobiology  2011;21(5):726-733.
Synapses made by local interneurons dominate the intrinsic circuitry of the mammalian visual thalamus and influence all signals traveling from the eye to cortex. Here we draw on physiological and computational analyses of receptive fields in the cat's lateral geniculate nucleus to describe how inhibition helps to enhance selectivity for stimulus features in space and time and to improve the efficiency of the neural code. Further, we explore specialized synaptic attributes of relay cells and interneurons and discuss how these might be adapted to preserve the temporal precision of retinal spike trains and thereby maximize the rate of information transmitted downstream.
doi:10.1016/j.conb.2011.06.004
PMCID: PMC3767471  PMID: 21752634
2.  Thalamic interneurons and relay cells use complementary synaptic mechanisms for visual processing 
Nature neuroscience  2010;14(2):224-231.
Synapses made by local interneurons dominate the thalamic circuits that process signals traveling from the eye downstream. The anatomical and physiological differences between interneurons and the (relay) cells that project to cortex are vast. To explore how these differences might influence visual processing, we made intracellular recordings from both classes of cells in vivo. Macroscopically, all receptive fields were similar, made of two concentrically arranged subregions in which dark and bright stimuli elicited responses of the reverse sign. Microscopically, however, the responses of the two types of cells had opposite profiles. Excitatory stimuli drove trains of single EPSPs in relay cells but graded depolarizations in interneurons. By contrast, suppressive stimuli evoked smooth hyperpolarizations in relay cells but unitary IPSPs in interneurons. Computational analyses suggested that these complementary patterns of response help preserve information encoded within the fine timing of retinal spikes and increase the amount of information transmitted to cortex.
doi:10.1038/nn.2707
PMCID: PMC3767474  PMID: 21170053
3.  Neurons in the thalamic reticular nucleus are selective for diverse and complex visual features 
All visual signals the cortex receives are influenced by the perigeniculate sector (PGN) of the thalamic reticular nucleus, which receives input from relay cells in the lateral geniculate and provides feedback inhibition in return. Relay cells have been studied in quantitative depth; they behave in a roughly linear fashion and have receptive fields with a stereotyped center-surround structure. We know far less about reticular neurons. Qualitative studies indicate they simply pool ascending input to generate non-selective gain control. Yet the perigeniculate is complicated; local cells are densely interconnected and fire lengthy bursts. Thus, we employed quantitative methods to explore the perigeniculate using relay cells as controls. By adapting methods of spike-triggered averaging and covariance analysis for bursts, we identified both first and second order features that build reticular receptive fields. The shapes of these spatiotemporal subunits varied widely; no stereotyped pattern emerged. Companion experiments showed that the shape of the first but not second order features could be explained by the overlap of On and Off inputs to a given cell. Moreover, we assessed the predictive power of the receptive field and how much information each component subunit conveyed. Linear-non-linear (LN) models including multiple subunits performed better than those made with just one; further each subunit encoded different visual information. Model performance for reticular cells was always lesser than for relay cells, however, indicating that reticular cells process inputs non-linearly. All told, our results suggest that the perigeniculate encodes diverse visual features to selectively modulate activity transmitted downstream.
doi:10.3389/fnint.2012.00118
PMCID: PMC3529363  PMID: 23269915
LGN; TRN; inhibition; receptive field; thalamus
4.  Recoding of Sensory Information across the Retinothalamic Synapse 
The Journal of Neuroscience  2010;30(41):13567-13577.
The neural code that represents the world is transformed at each stage of a sensory pathway. These transformations enable downstream neurons to recode information they receive from earlier stages. Using the retinothalamic synapse as a model system, we developed a theoretical framework to identify stimulus features that are inherited, gained, or lost across stages. Specifically, we observed that thalamic spikes encode novel, emergent, temporal features not conveyed by single retinal spikes. Furthermore, we found that thalamic spikes are not only more informative than retinal ones, as expected, but also more independent. Next, we asked how thalamic spikes gain sensitivity to the emergent features. Explicitly, we found that the emergent features are encoded by retinal spike pairs and then recoded into independent thalamic spikes. Finally, we built a model of synaptic transmission that reproduced our observations. Thus, our results established a link between synaptic mechanisms and the recoding of sensory information.
doi:10.1523/JNEUROSCI.0910-10.2010
PMCID: PMC3842493  PMID: 20943898
5.  A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots 
PLoS ONE  2011;6(2):e16724.
Background
Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta.
Principal Findings
A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background.
Conclusions/Significance
Our results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi and is independent of the XRNs.
doi:10.1371/journal.pone.0016724
PMCID: PMC3033419  PMID: 21304819
6.  Exploring the Function of Neural Oscillations in Early Sensory Systems 
Neuronal oscillations appear throughout the nervous system, in structures as diverse as the cerebral cortex, hippocampus, subcortical nuclei and sense organs. Whether neural rhythms contribute to normal function, are merely epiphenomena, or even interfere with physiological processing are topics of vigorous debate. Sensory pathways are ideal for investigation of oscillatory activity because their inputs can be defined. Thus, we will focus on sensory systems as we ask how neural oscillations arise and how they might encode information about the stimulus. We will highlight recent work in the early visual pathway that shows how oscillations can multiplex different types of signals to increase the amount of information that spike trains encode and transmit. Last, we will describe oscillation-based models of visual processing and explore how they might guide further research.
doi:10.3389/neuro.01.010.2010
PMCID: PMC2891629  PMID: 20582272
LGN; retina; visual coding; oscillations; multiplexing
7.  Retinal Oscillations Carry Visual Information to Cortex 
Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs) and thalamic outputs (spikes) and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz), is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40–80 Hz) and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.
doi:10.3389/neuro.06.004.2009
PMCID: PMC2674373  PMID: 19404487
LGN; retina; visual coding; natural stimuli; oscillations
8.  Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice 
BMC Plant Biology  2008;8:123.
Background
The plant miRNAs represent an important class of endogenous small RNAs that guide cleavage of an mRNA target or repress its translation to control development and adaptation to stresses. MiRNAs are nuclear-encoded genes transcribed by RNA polymerase II, producing a primary precursor that is subsequently processed by DCL1 an RNase III Dicer-like protein.
In rice hundreds of miRNAs have been described or predicted, but little is known on their genes and precursors which are important criteria to distinguish them from siRNAs. Here we develop a combination of experimental approaches to detect novel miRNAs in rice, identify their precursor transcripts and genes and predict or validate their mRNA targets.
Results
We produced four cDNA libraries from small RNA fractions extracted from distinct rice tissues. By in silico analysis we selected 6 potential novel miRNAs, and confirmed that their expression requires OsDCL1. We predicted their targets and used 5'RACE to validate cleavage for three of them, targeting a PPR, an SPX domain protein and a GT-like transcription factor respectively.
In addition, we identified precursor transcripts for the 6 miRNAs expressed in rice, showing that these precursors can be efficiently processed using a transient expression assay in transfected Nicotiana benthamiana leaves. Most interestingly, we describe two precursors producing tandem miRNAs, but in distinct arrays. We focus on one of them encoding osa-miR159a.2, a novel miRNA produced from the same stem-loop structure encoding the conserved osa-miR159a.1. We show that this dual osa-miR159a.2-osa-miR159a.1 structure is conserved in distant rice species and maize. Finally we show that the predicted mRNA target of osa-miR159a.2 encoding a GT-like transcription factor is cleaved in vivo at the expected site.
Conclusion
The combination of approaches developed here identified six novel miRNAs expressed in rice which can be clearly distinguished from siRNAs. Importantly, we show that two miRNAs can be produced from a single precursor, either from tandem stem-loops or tandemly arrayed in a single stem-loop. This suggests that processing of these precursors could be an important regulatory step to produce one or more functional miRNAs in plants and perhaps coordinate cleavage of distinct targets in the same plant tissue.
doi:10.1186/1471-2229-8-123
PMCID: PMC2607281  PMID: 19055717
9.  Feedforward Excitation and Inhibition Evoke Dual Modes of Firing in the Cat’s Visual Thalamus during Naturalistic Viewing 
Neuron  2007;55(3):465-478.
SUMMARY
Thalamic relay cells transmit information from retina to cortex by firing either rapid bursts or tonic trains of spikes. Bursts occur when the membrane voltage is low, as during sleep, because they depend on channels that cannot respond to excitatory input unless they are primed by strong hyperpolarization. Cells fire tonically when depolarized, as during waking. Thus, mode of firing is usually associated with behavioral state. Growing evidence, however, suggests that sensory processing involves both burst and tonic spikes. To ask if visually evoked synaptic responses induce each type of firing, we recorded intracellular responses to natural movies from relay cells and developed methods to map the receptive fields of the excitation and inhibition that the images evoked. In addition to tonic spikes, the movies routinely elicited lasting inhibition from the center of the receptive field that permitted bursts to fire. Therefore, naturally evoked patterns of synaptic input engage dual modes of firing.
doi:10.1016/j.neuron.2007.06.039
PMCID: PMC2587266  PMID: 17678858
10.  Transcriptional Responses of Arabidopsis thaliana during Wilt Disease Caused by the Soil-Borne Phytopathogenic Bacterium, Ralstonia solanacearum 
PLoS ONE  2008;3(7):e2589.
Bacterial wilt is a common disease that causes severe yield and quality losses in many plants. In the present study, we used the model Ralstonia solanacearum-Arabidopsis thaliana pathosystem to study transcriptional changes associated with wilt disease development. Susceptible Col-5 plants and RRS1-R-containing resistant Nd-1 plants were root-inoculated with R. solanacearum strains harbouring or lacking the matching PopP2 avirulence gene. Gene expression was marginally affected in leaves during the early stages of infection. Major changes in transcript levels took place between 4 and 5 days after pathogen inoculation, at the onset of appearance of wilt symptoms. Up-regulated genes in diseased plants included ABA-, senescence- and basal resistance-associated genes. The influence of the plant genetic background on disease-associated gene expression is weak although some genes appeared to be specifically up-regulated in Nd-1 plants. Inactivation of some disease-associated genes led to alterations in the plant responses to a virulent strain of the pathogen. In contrast to other pathosystems, very little overlap in gene expression was detected between the early phases of the resistance response and the late stages of disease development. This observation may be explained by the fact that above-ground tissues were sampled for profiling whereas the bacteria were applied to root tissues.
This exhaustive analysis of Arabidopsis genes whose expression is modulated during bacterial wilt development paves the way for dissecting plant networks activated by recognition of R. solanacearum effectors in susceptible plants.
doi:10.1371/journal.pone.0002589
PMCID: PMC2435627  PMID: 18596930
11.  Receptive field structure varies with layer in the primary visual cortex 
Nature neuroscience  2005;8(3):372-379.
Here we ask whether visual response pattern varies with position in the cortical microcircuit by comparing the structure of receptive fields recorded from the different layers of the cat's primary visual cortex. We used whole-cell recording in vivo to show the spatial distribution of visually evoked excitatory and inhibitory inputs and to stain individual neurons. We quantified the distribution of ‘On’ and ‘Off’ responses and the presence of spatially opponent excitation and inhibition within the receptive field. The thalamorecipient layers (4 and upper 6) were dominated by simple cells, as defined by two criteria: they had separated On and Off subregions, and they had push-pull responses (in a given subregion, stimuli of the opposite contrast evoked responses of the opposite sign). Other types of response profile correlated with laminar location as well. Thus, connections unique to each visual cortical layer are likely to serve distinct functions.
doi:10.1038/nn1404
PMCID: PMC1987328  PMID: 15711543

Results 1-11 (11)