PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  A framework for human microbiome research 
Methé, Barbara A. | Nelson, Karen E. | Pop, Mihai | Creasy, Heather H. | Giglio, Michelle G. | Huttenhower, Curtis | Gevers, Dirk | Petrosino, Joseph F. | Abubucker, Sahar | Badger, Jonathan H. | Chinwalla, Asif T. | Earl, Ashlee M. | FitzGerald, Michael G. | Fulton, Robert S. | Hallsworth-Pepin, Kymberlie | Lobos, Elizabeth A. | Madupu, Ramana | Magrini, Vincent | Martin, John C. | Mitreva, Makedonka | Muzny, Donna M. | Sodergren, Erica J. | Versalovic, James | Wollam, Aye M. | Worley, Kim C. | Wortman, Jennifer R. | Young, Sarah K. | Zeng, Qiandong | Aagaard, Kjersti M. | Abolude, Olukemi O. | Allen-Vercoe, Emma | Alm, Eric J. | Alvarado, Lucia | Andersen, Gary L. | Anderson, Scott | Appelbaum, Elizabeth | Arachchi, Harindra M. | Armitage, Gary | Arze, Cesar A. | Ayvaz, Tulin | Baker, Carl C. | Begg, Lisa | Belachew, Tsegahiwot | Bhonagiri, Veena | Bihan, Monika | Blaser, Martin J. | Bloom, Toby | Vivien Bonazzi, J. | Brooks, Paul | Buck, Gregory A. | Buhay, Christian J. | Busam, Dana A. | Campbell, Joseph L. | Canon, Shane R. | Cantarel, Brandi L. | Chain, Patrick S. | Chen, I-Min A. | Chen, Lei | Chhibba, Shaila | Chu, Ken | Ciulla, Dawn M. | Clemente, Jose C. | Clifton, Sandra W. | Conlan, Sean | Crabtree, Jonathan | Cutting, Mary A. | Davidovics, Noam J. | Davis, Catherine C. | DeSantis, Todd Z. | Deal, Carolyn | Delehaunty, Kimberley D. | Dewhirst, Floyd E. | Deych, Elena | Ding, Yan | Dooling, David J. | Dugan, Shannon P. | Dunne, Wm. Michael | Durkin, A. Scott | Edgar, Robert C. | Erlich, Rachel L. | Farmer, Candace N. | Farrell, Ruth M. | Faust, Karoline | Feldgarden, Michael | Felix, Victor M. | Fisher, Sheila | Fodor, Anthony A. | Forney, Larry | Foster, Leslie | Di Francesco, Valentina | Friedman, Jonathan | Friedrich, Dennis C. | Fronick, Catrina C. | Fulton, Lucinda L. | Gao, Hongyu | Garcia, Nathalia | Giannoukos, Georgia | Giblin, Christina | Giovanni, Maria Y. | Goldberg, Jonathan M. | Goll, Johannes | Gonzalez, Antonio | Griggs, Allison | Gujja, Sharvari | Haas, Brian J. | Hamilton, Holli A. | Harris, Emily L. | Hepburn, Theresa A. | Herter, Brandi | Hoffmann, Diane E. | Holder, Michael E. | Howarth, Clinton | Huang, Katherine H. | Huse, Susan M. | Izard, Jacques | Jansson, Janet K. | Jiang, Huaiyang | Jordan, Catherine | Joshi, Vandita | Katancik, James A. | Keitel, Wendy A. | Kelley, Scott T. | Kells, Cristyn | Kinder-Haake, Susan | King, Nicholas B. | Knight, Rob | Knights, Dan | Kong, Heidi H. | Koren, Omry | Koren, Sergey | Kota, Karthik C. | Kovar, Christie L. | Kyrpides, Nikos C. | La Rosa, Patricio S. | Lee, Sandra L. | Lemon, Katherine P. | Lennon, Niall | Lewis, Cecil M. | Lewis, Lora | Ley, Ruth E. | Li, Kelvin | Liolios, Konstantinos | Liu, Bo | Liu, Yue | Lo, Chien-Chi | Lozupone, Catherine A. | Lunsford, R. Dwayne | Madden, Tessa | Mahurkar, Anup A. | Mannon, Peter J. | Mardis, Elaine R. | Markowitz, Victor M. | Mavrommatis, Konstantinos | McCorrison, Jamison M. | McDonald, Daniel | McEwen, Jean | McGuire, Amy L. | McInnes, Pamela | Mehta, Teena | Mihindukulasuriya, Kathie A. | Miller, Jason R. | Minx, Patrick J. | Newsham, Irene | Nusbaum, Chad | O’Laughlin, Michelle | Orvis, Joshua | Pagani, Ioanna | Palaniappan, Krishna | Patel, Shital M. | Pearson, Matthew | Peterson, Jane | Podar, Mircea | Pohl, Craig | Pollard, Katherine S. | Priest, Margaret E. | Proctor, Lita M. | Qin, Xiang | Raes, Jeroen | Ravel, Jacques | Reid, Jeffrey G. | Rho, Mina | Rhodes, Rosamond | Riehle, Kevin P. | Rivera, Maria C. | Rodriguez-Mueller, Beltran | Rogers, Yu-Hui | Ross, Matthew C. | Russ, Carsten | Sanka, Ravi K. | Pamela Sankar, J. | Sathirapongsasuti, Fah | Schloss, Jeffery A. | Schloss, Patrick D. | Schmidt, Thomas M. | Scholz, Matthew | Schriml, Lynn | Schubert, Alyxandria M. | Segata, Nicola | Segre, Julia A. | Shannon, William D. | Sharp, Richard R. | Sharpton, Thomas J. | Shenoy, Narmada | Sheth, Nihar U. | Simone, Gina A. | Singh, Indresh | Smillie, Chris S. | Sobel, Jack D. | Sommer, Daniel D. | Spicer, Paul | Sutton, Granger G. | Sykes, Sean M. | Tabbaa, Diana G. | Thiagarajan, Mathangi | Tomlinson, Chad M. | Torralba, Manolito | Treangen, Todd J. | Truty, Rebecca M. | Vishnivetskaya, Tatiana A. | Walker, Jason | Wang, Lu | Wang, Zhengyuan | Ward, Doyle V. | Warren, Wesley | Watson, Mark A. | Wellington, Christopher | Wetterstrand, Kris A. | White, James R. | Wilczek-Boney, Katarzyna | Wu, Yuan Qing | Wylie, Kristine M. | Wylie, Todd | Yandava, Chandri | Ye, Liang | Ye, Yuzhen | Yooseph, Shibu | Youmans, Bonnie P. | Zhang, Lan | Zhou, Yanjiao | Zhu, Yiming | Zoloth, Laurie | Zucker, Jeremy D. | Birren, Bruce W. | Gibbs, Richard A. | Highlander, Sarah K. | Weinstock, George M. | Wilson, Richard K. | White, Owen
Nature  2012;486(7402):215-221.
A variety of microbial communities and their genes (microbiome) exist throughout the human body, playing fundamental roles in human health and disease. The NIH funded Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 to 18 body sites up to three times, which to date, have generated 5,177 microbial taxonomic profiles from 16S rRNA genes and over 3.5 Tb of metagenomic sequence. In parallel, approximately 800 human-associated reference genomes have been sequenced. Collectively, these data represent the largest resource to date describing the abundance and variety of the human microbiome, while providing a platform for current and future studies.
doi:10.1038/nature11209
PMCID: PMC3377744  PMID: 22699610
2.  Development and Accuracy of Quantitative Real-Time Polymerase Chain Reaction Assays for Detection and Quantification of Enterotoxigenic Escherichia coli (ETEC) Heat Labile and Heat Stable Toxin Genes in Travelers' Diarrhea Samples 
Enterotoxigenic Escherichia coli (ETEC), the leading bacterial pathogen of travelers' diarrhea, is routinely detected by an established DNA hybridization protocol that is neither sensitive nor quantitative. Quantitative real-time polymerase chain reaction (qPCR) assays that detect the ETEC toxin genes eltA, sta1, and sta2 in clinical stool samples were developed and tested using donor stool inoculated with known quantities of ETEC bacteria. The sensitivity of the qPCR assays is 89%, compared with 22% for the DNA hybridization assay, and the limits of detection are 10,000-fold lower than the DNA hybridization assays performed in parallel. Ninety-three clinical stool samples, previously characterized by DNA hybridization, were tested using the new ETEC qPCR assays. Discordant toxin profiles were observed for 22 samples, notably, four samples originally typed as ETEC negative were ETEC positive. The qPCR assays are unique in their sensitivity and ability to quantify the three toxin genes in clinical stool samples.
doi:10.4269/ajtmh.13-0383
PMCID: PMC3886408  PMID: 24189361
3.  Molecular and Evolutionary Analysis of NEAr-Iron Transporter (NEAT) Domains 
PLoS ONE  2014;9(8):e104794.
Iron is essential for bacterial survival, being required for numerous biological processes. NEAr-iron Transporter (NEAT) domains have been studied in pathogenic Gram-positive bacteria to understand how their proteins obtain heme as an iron source during infection. While a 2002 study initially discovered and annotated the NEAT domain encoded by the genomes of several Gram-positive bacteria, there remains a scarcity of information regarding the conservation and distribution of NEAT domains throughout the bacterial kingdom, and whether these domains are restricted to pathogenic bacteria. This study aims to expand upon initial bioinformatics analysis of predicted NEAT domains, by exploring their evolution and conserved function. This information was used to identify new candidate domains in both pathogenic and nonpathogenic organisms. We also searched metagenomic datasets, specifically sequence from the Human Microbiome Project. Here, we report a comprehensive phylogenetic analysis of 343 NEAT domains, encoded by Gram-positive bacteria, mostly within the phylum Firmicutes, with the exception of Eggerthella sp. (Actinobacteria) and an unclassified Mollicutes bacterium (Tenericutes). No new NEAT sequences were identified in the HMP dataset. We detected specific groups of NEAT domains based on phylogeny of protein sequences, including a cluster of novel clostridial NEAT domains. We also identified environmental and soil organisms that encode putative NEAT proteins. Biochemical analysis of heme binding by a NEAT domain from a protein encoded by the soil-dwelling organism Paenibacillus polymyxa demonstrated that the domain is homologous in function to NEAT domains encoded by pathogenic bacteria. Together, this study provides the first global bioinformatics analysis and phylogenetic evidence that NEAT domains have a strong conservation of function, despite group-specific differences at the amino acid level. These findings will provide information useful for future projects concerning the structure and function of NEAT domains, particularly in pathogens where they have yet to be studied.
doi:10.1371/journal.pone.0104794
PMCID: PMC4143258  PMID: 25153520
4.  From Prediction to Function Using Evolutionary Genomics: Human-Specific Ecotypes of Lactobacillus reuteri Have Diverse Probiotic Functions 
Genome Biology and Evolution  2014;6(7):1772-1789.
The vertebrate gut symbiont Lactobacillus reuteri has diversified into separate clades reflecting host origin. Strains show evidence of host adaptation, but how host–microbe coevolution influences microbial-derived effects on hosts is poorly understood. Emphasizing human-derived strains of L. reuteri, we combined comparative genomic analyses with functional assays to examine variations in host interaction among genetically distinct ecotypes. Within clade II or VI, the genomes of human-derived L. reuteri strains are highly conserved in gene content and at the nucleotide level. Nevertheless, they share only 70–90% of total gene content, indicating differences in functional capacity. Human-associated lineages are distinguished by genes related to bacteriophages, vitamin biosynthesis, antimicrobial production, and immunomodulation. Differential production of reuterin, histamine, and folate by 23 clade II and VI strains was demonstrated. These strains also differed with respect to their ability to modulate human cytokine production (tumor necrosis factor, monocyte chemoattractant protein-1, interleukin [IL]-1β, IL-5, IL-7, IL-12, and IL-13) by myeloid cells. Microarray analysis of representative clade II and clade VI strains revealed global regulation of genes within the reuterin, vitamin B12, folate, and arginine catabolism gene clusters by the AraC family transcriptional regulator, PocR. Thus, human-derived L. reuteri clade II and VI strains are genetically distinct and their differences affect their functional repertoires and probiotic features. These findings highlight the biological impact of microbe:host coevolution and illustrate the functional significance of subspecies differences in the human microbiome. Consideration of host origin and functional differences at the subspecies level may have major impacts on probiotic strain selection and considerations of microbial ecology in mammalian species.
doi:10.1093/gbe/evu137
PMCID: PMC4122935  PMID: 24951561
host-based evolution; reuterin; PocR transcriptional regulation; immunostimulatory; anti-inflammatory; histamine
5.  Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus 
Genome Biology and Evolution  2014;6(4):741-753.
The genus Streptococcus comprises important pathogens that have a severe impact on human health and are responsible for substantial economic losses to agriculture. Here, we utilize 46 Streptococcus genome sequences (44 species), including eight species sequenced here, to provide the first genomic level insight into the evolutionary history and genetic basis underlying the functional diversity of all major groups of this genus. Gene gain/loss analysis revealed a dynamic pattern of genome evolution characterized by an initial period of gene gain followed by a period of loss, as the major groups within the genus diversified. This was followed by a period of genome expansion associated with the origins of the present extant species. The pattern is concordant with an emerging view that genomes evolve through a dynamic process of expansion and streamlining. A large proportion of the pan-genome has experienced lateral gene transfer (LGT) with causative factors, such as relatedness and shared environment, operating over different evolutionary scales. Multiple gene ontology terms were significantly enriched for each group, and mapping terms onto the phylogeny showed that those corresponding to genes born on branches leading to the major groups represented approximately one-fifth of those enriched. Furthermore, despite the extensive LGT, several biochemical characteristics have been retained since group formation, suggesting genomic cohesiveness through time, and that these characteristics may be fundamental to each group. For example, proteolysis: mitis group; urea metabolism: salivarius group; carbohydrate metabolism: pyogenic group; and transcription regulation: bovis group.
doi:10.1093/gbe/evu048
PMCID: PMC4007547  PMID: 24625962
comparative genomics; phylogenetics; gene gain and loss; enrichment; lateral gene transfer
6.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform 
Applied and Environmental Microbiology  2013;79(17):5112-5120.
Rapid advances in sequencing technology have changed the experimental landscape of microbial ecology. In the last 10 years, the field has moved from sequencing hundreds of 16S rRNA gene fragments per study using clone libraries to the sequencing of millions of fragments per study using next-generation sequencing technologies from 454 and Illumina. As these technologies advance, it is critical to assess the strengths, weaknesses, and overall suitability of these platforms for the interrogation of microbial communities. Here, we present an improved method for sequencing variable regions within the 16S rRNA gene using Illumina's MiSeq platform, which is currently capable of producing paired 250-nucleotide reads. We evaluated three overlapping regions of the 16S rRNA gene that vary in length (i.e., V34, V4, and V45) by resequencing a mock community and natural samples from human feces, mouse feces, and soil. By titrating the concentration of 16S rRNA gene amplicons applied to the flow cell and using a quality score-based approach to correct discrepancies between reads used to construct contigs, we were able to reduce error rates by as much as two orders of magnitude. Finally, we reprocessed samples from a previous study to demonstrate that large numbers of samples could be multiplexed and sequenced in parallel with shotgun metagenomes. These analyses demonstrate that our approach can provide data that are at least as good as that generated by the 454 platform while providing considerably higher sequencing coverage for a fraction of the cost.
doi:10.1128/AEM.01043-13
PMCID: PMC3753973  PMID: 23793624
7.  Microbial reference genomes for human metagenomics 
Genome Biology  2011;12(Suppl 1):I7.
doi:10.1186/gb-2011-12-s1-i7
PMCID: PMC3439081
8.  Comparative Genomics of Gardnerella vaginalis Strains Reveals Substantial Differences in Metabolic and Virulence Potential 
PLoS ONE  2010;5(8):e12411.
Background
Gardnerella vaginalis is described as a common vaginal bacterial species whose presence correlates strongly with bacterial vaginosis (BV). Here we report the genome sequencing and comparative analyses of three strains of G. vaginalis. Strains 317 (ATCC 14019) and 594 (ATCC 14018) were isolated from the vaginal tracts of women with symptomatic BV, while Strain 409-05 was isolated from a healthy, asymptomatic individual with a Nugent score of 9.
Principal Findings
Substantial genomic rearrangement and heterogeneity were observed that appeared to have resulted from both mobile elements and substantial lateral gene transfer. These genomic differences translated to differences in metabolic potential. All strains are equipped with significant virulence potential, including genes encoding the previously described vaginolysin, pili for cytoadhesion, EPS biosynthetic genes for biofilm formation, and antimicrobial resistance systems, We also observed systems promoting multi-drug and lantibiotic extrusion. All G. vaginalis strains possess a large number of genes that may enhance their ability to compete with and exclude other vaginal colonists. These include up to six toxin-antitoxin systems and up to nine additional antitoxins lacking cognate toxins, several of which are clustered within each genome. All strains encode bacteriocidal toxins, including two lysozyme-like toxins produced uniquely by strain 409-05. Interestingly, the BV isolates encode numerous proteins not found in strain 409-05 that likely increase their pathogenic potential. These include enzymes enabling mucin degradation, a trait previously described to strongly correlate with BV, although commonly attributed to non-G. vaginalis species.
Conclusions
Collectively, our results indicate that all three strains are able to thrive in vaginal environments, and therein the BV isolates are capable of occupying a niche that is unique from 409-05. Each strain has significant virulence potential, although genomic and metabolic differences, such as the ability to degrade mucin, indicate that the detection of G. vaginalis in the vaginal tract provides only partial information on the physiological potential of the organism.
doi:10.1371/journal.pone.0012411
PMCID: PMC2928729  PMID: 20865041
9.  Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF 
Genome Biology  2008;9(7):R110.
A comparison of two strains of the hospital pathogen Enterococcus faecalis suggests that mediators of virulence differ between strains and that virulence does not depend on mobile gene elements
Background
Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies.
Results
The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence specific to V583 was substituted by a sequence specific to OG1RF. For example, the iol operon of OG1RF replaces a possible prophage and the vanB transposon in V583. Finally, we found 16 regions that were present in V583 but missing from OG1RF, including the proposed pathogenicity island, several probable prophages, and the cpsCDEFGHIJK capsular polysaccharide operon. OG1RF was more rapidly but less frequently lethal than V583 in the mouse peritonitis model and considerably outcompeted V583 in a murine model of urinary tract infections.
Conclusion
E. faecalis OG1RF carries a number of unique loci compared to V583, but the almost complete lack of mobile genetic elements demonstrates that this is not a defining feature of the species. Additionally, OG1RF's effects in experimental models suggest that mediators of virulence may be diverse between different E. faecalis strains and that virulence is not dependent on the presence of mobile genetic elements.
doi:10.1186/gb-2008-9-7-r110
PMCID: PMC2530867  PMID: 18611278
10.  Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus 
BMC Microbiology  2007;7:99.
Background
Community acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear.
Results
We sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Children's Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified.
Conclusion
USA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.
doi:10.1186/1471-2180-7-99
PMCID: PMC2222628  PMID: 17986343
11.  Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032 
PLoS ONE  2007;2(9):e928.
Background
Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, γ-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species.
Principal Findings
The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species.
Significance
This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.
doi:10.1371/journal.pone.0000928
PMCID: PMC1976550  PMID: 17895969
12.  Genome Sequence of Fusobacterium nucleatum Subspecies Polymorphum — a Genetically Tractable Fusobacterium 
PLoS ONE  2007;2(8):e659.
Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common.
doi:10.1371/journal.pone.0000659
PMCID: PMC1924603  PMID: 17668047
13.  The Genome Sequence of Mannheimia haemolytica A1: Insights into Virulence, Natural Competence, and Pasteurellaceae Phylogeny†  
Journal of Bacteriology  2006;188(20):7257-7266.
The draft genome sequence of Mannheimia haemolytica A1, the causative agent of bovine respiratory disease complex (BRDC), is presented. Strain ATCC BAA-410, isolated from the lung of a calf with BRDC, was the DNA source. The annotated genome includes 2,839 coding sequences, 1,966 of which were assigned a function and 436 of which are unique to M. haemolytica. Through genome annotation many features of interest were identified, including bacteriophages and genes related to virulence, natural competence, and transcriptional regulation. In addition to previously described virulence factors, M. haemolytica encodes adhesins, including the filamentous hemagglutinin FhaB and two trimeric autotransporter adhesins. Two dual-function immunoglobulin-protease/adhesins are also present, as is a third immunoglobulin protease. Genes related to iron acquisition and drug resistance were identified and are likely important for survival in the host and virulence. Analysis of the genome indicates that M. haemolytica is naturally competent, as genes for natural competence and DNA uptake signal sequences (USS) are present. Comparison of competence loci and USS in other species in the family Pasteurellaceae indicates that M. haemolytica, Actinobacillus pleuropneumoniae, and Haemophilus ducreyi form a lineage distinct from other Pasteurellaceae. This observation was supported by a phylogenetic analysis using sequences of predicted housekeeping genes.
doi:10.1128/JB.00675-06
PMCID: PMC1636238  PMID: 17015664
14.  Complete Genome Sequence of Rickettsia typhi and Comparison with Sequences of Other Rickettsiae 
Journal of Bacteriology  2004;186(17):5842-5855.
Rickettsia typhi, the causative agent of murine typhus, is an obligate intracellular bacterium with a life cycle involving both vertebrate and invertebrate hosts. Here we present the complete genome sequence of R. typhi (1,111,496 bp) and compare it to the two published rickettsial genome sequences: R. prowazekii and R. conorii. We identified 877 genes in R. typhi encoding 3 rRNAs, 33 tRNAs, 3 noncoding RNAs, and 838 proteins, 3 of which are frameshifts. In addition, we discovered more than 40 pseudogenes, including the entire cytochrome c oxidase system. The three rickettsial genomes share 775 genes: 23 are found only in R. prowazekii and R. typhi, 15 are found only in R. conorii and R. typhi, and 24 are unique to R. typhi. Although most of the genes are colinear, there is a 35-kb inversion in gene order, which is close to the replication terminus, in R. typhi, compared to R. prowazekii and R. conorii. In addition, we found a 124-kb R. typhi-specific inversion, starting 19 kb from the origin of replication, compared to R. prowazekii and R. conorii. Inversions in this region are also seen in the unpublished genome sequences of R. sibirica and R. rickettsii, indicating that this region is a hot spot for rearrangements. Genome comparisons also revealed a 12-kb insertion in the R. prowazekii genome, relative to R. typhi and R. conorii, which appears to have occurred after the typhus (R. prowazekii and R. typhi) and spotted fever (R. conorii) groups diverged. The three-way comparison allowed further in silico analysis of the SpoT split genes, leading us to propose that the stringent response system is still functional in these rickettsiae.
doi:10.1128/JB.186.17.5842-5855.2004
PMCID: PMC516817  PMID: 15317790
15.  Use of Operon Fusions in Mannheimia haemolytica To Identify Environmental and cis-Acting Regulators of Leukotoxin Transcription 
Infection and Immunity  2001;69(10):6231-6239.
The leukotoxin of Mannheimia haemolytica is an important virulence factor that contributes to much of the pathology observed in the lungs of animals with bovine shipping fever pneumonia. We believe that identification of factors that regulate leukotoxin expression may provide insight into M. haemolytica pathogenicity. The DNA sequence upstream of the leukotoxin operon is divergently shared by PlapT, which transcribes an arginine permease gene. The intergenic region contains several elements that are potential sites for transcriptional modulation of the promoters. We have developed plasmid-borne chloramphenicol acetyltransferase (cat) operon fusions, as well as lktC::cat chromosomal fusions, to study transcription initiation in M. haemolytica. Using these genetic tools, we have identified cis-acting sequences and environmental conditions that modulate transcription of the leukotoxin and lapT promoters. By deletion analysis, promoters were shown to rely on sequences upstream of their −10 and −35 regions for full activity. Direct repeats of the sequence TGT-N(11)-ACA and a static bend region caused by phased adenine tracts were necessary for full activation of Plkt. A computer-generated model of the promoter's structure shows how DNA bending brings the repeat sequences within close proximity to the Plkt RNA polymerase, and we hypothesize that these repeats are a binding site for an activator of leukotoxin transcription. The lktC::cat operon fusion was also used to demonstrate that, like that of other RTX toxins, leukotoxin transcription is environmentally regulated. Roles for iron deprivation and temperature change were identified.
doi:10.1128/IAI.69.10.6231-6239.2001
PMCID: PMC98756  PMID: 11553565
16.  Inactivation of Pasteurella (Mannheimia) haemolytica Leukotoxin Causes Partial Attenuation of Virulence in a Calf Challenge Model 
Infection and Immunity  2000;68(7):3916-3922.
The leukotoxin of Pasteurella (Mannheimia) haemolytica is believed to play a significant role in pathogenesis, causing cell lysis and apoptosis that lead to the lung pathology characteristic of bovine shipping fever. Using a system for Cre-lox recombination, a nonpolar mutation within the lktC transacylase gene of the leukotoxin operon was created. The lktC locus was insertionally inactivated using a loxP-aph3-loxP cassette, and then the aph3 marker was excised from the chromosome by Cre recombinase expressed from a P. haemolytica plasmid. The resulting lktC strain (SH2099) secretes inactive leukotoxin and carries no known antibiotic resistance genes. Strain SH2099 was tested for virulence in a calf challenge model. We inoculated 3 × 108 or 3 × 109 CFU of wild-type or mutant bacteria into the lungs of healthy, colostrum-deprived calves via transthoracic injection. Animals were observed for clinical signs and for nasal colonization for 4 days, after which they were euthanized and necropsied. The lower inoculum (3 × 108 CFU) caused significantly fewer deaths and allowed lung pathology to be scored and compared, while the 3 × 109 CFU dose of either the wild-type or mutant was lethal to ≥50% of the calves. The estimated 50% lethal dose of SH2099 was four times higher than that of the wild-type strain. Lung lesion scores were reduced twofold in animals inoculated with the mutant, while clinical scores were nearly equivalent for both strains. The wild-type and mutant strains were equally capable of colonizing the upper respiratory tracts of the calves. In this study, the P. haemolytica lktC mutant was shown to be less virulent than the parent strain.
PMCID: PMC101667  PMID: 10858203

Results 1-16 (16)