PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Human Puumala and Dobrava Hantavirus Infections in the Black Sea Region of Turkey: A Cross-Sectional Study 
Abstract
This study was carried out to better understand the epidemiology of hantaviruses in a province of Turkey (Giresun) where human hantavirus disease has recently been detected. In this cross-sectional study, a total of 626 blood samples from healthy people aged 15 and 84 years old were collected both in urban and rural areas in 2009. The sera were tested by enzyme-linked immunosorbent assay (ELISA), immunoblotting assay, and the focus reduction neutralization test (FRNT). We screened the samples by an ELISA and found that 65/626 samples reacted positively for the presence of hantavirus-reactive immunoglobulin G (IgG). Twenty of the 65 ELISA-positive samples could be confirmed by an immunobloting assay, and the overall seroprevalence was thereby calculated to 3.2% (20/626). The seroprevalence of the people living in wood areas or adobe houses 9/17 (52.9%) was significantly higher than among people living in concrete houses 10/47 (21.3%) (p=0.014). Finally, 3 of the 20 immunoblot-positive sera were confirmed as specific for the Puumala hantavirus serotype by FRNT, 1 serum was confirmed as Dobrava virus-specific, whereas 1 serum was found to be equally reactive to Dobrava and Saaremaa viruses. We will now focus on further investigations of the ecology and epidemiology of hantaviruses in humans and their carrier animals in Turkey, studies that have already been started and will be further intensified.
doi:10.1089/vbz.2011.0939
PMCID: PMC3564479  PMID: 23289396
Hantavirus; Serology; Turkey
2.  Were the English Sweating Sickness and the Picardy Sweat Caused by Hantaviruses? 
Viruses  2014;6(1):151-171.
The English sweating sickness caused five devastating epidemics between 1485 and 1551, England was hit hardest, but on one occasion also mainland Europe, with mortality rates between 30% and 50%. The Picardy sweat emerged about 150 years after the English sweat disappeared, in 1718, in France. It caused 196 localized outbreaks and apparently in its turn disappeared in 1861. Both diseases have been the subject of numerous attempts to define their origin, but so far all efforts were in vain. Although both diseases occurred in different time frames and were geographically not overlapping, a common denominator could be what we know today as hantavirus infections. This review aims to shed light on the characteristics of both diseases from contemporary as well as current knowledge and suggests hantavirus infection as the most likely cause for the English sweating sickness as well as for the Picardy sweat.
doi:10.3390/v6010151
PMCID: PMC3917436  PMID: 24402305
English sweating sickness; Picardy sweat; hantavirus
3.  Spatial disaggregation of tick occurrence and ecology at a local scale as a preliminary step for spatial surveillance of tick-borne diseases: general framework and health implications in Belgium 
Parasites & Vectors  2013;6:190.
Background
The incidence of tick-borne diseases is increasing in Europe. Sub national information on tick distribution, ecology and vector status is often lacking. However, precise location of infection risk can lead to better targeted prevention measures, surveillance and control.
Methods
In this context, the current paper compiled geolocated tick occurrences in Belgium, a country where tick-borne disease has received little attention, in order to highlight the potential value of spatial approaches and draw some recommendations for future research priorities.
Results
Mapping of 89,289 ticks over 654 sites revealed that ticks such as Ixodes ricinus and Ixodes hexagonus are largely present while Dermacentor reticulatus has a patchy distribution. Suspected hot spots of tick diversity might favor pathogen exchanges and suspected hot spots of I. ricinus abundance might increase human-vector contact locally. This underlines the necessity to map pathogens and ticks in detail. While I. ricinus is the main vector, I. hexagonus is a vector and reservoir of Borrelia burgdorferi s.l., which is active the whole year and is also found in urban settings. This and other nidiculous species bite humans less frequently, but seem to harbour pathogens. Their role in maintaining a pathogenic cycle within the wildlife merits investigation as they might facilitate transmission to humans if co-occurring with I. ricinus. Many micro-organisms are found abroad in tick species present in Belgium. Most have not been recorded locally but have not been searched for. Some are transmitted directly at the time of the bite, suggesting promotion of tick avoidance additionally to tick removal.
Conclusion
This countrywide approach to tick-borne diseases has helped delineate recommendations for future research priorities necessary to design public health policies aimed at spatially integrating the major components of the ecological cycle of tick-borne diseases. A systematic survey of tick species and associated pathogens is called for in Europe, as well as better characterisation of species interaction in the ecology of tick-borne diseases, those being all tick species, pathogens, hosts and other species which might play a role in tick-borne diseases complex ecosystems.
doi:10.1186/1756-3305-6-190
PMCID: PMC3726513  PMID: 23800283
Tick; Vector; Spatial distribution; Ecology; Vector-borne diseases
4.  Ticks and associated pathogens collected from dogs and cats in Belgium 
Parasites & Vectors  2013;6:183.
Background
Although Ixodes spp. are the most common ticks in North-Western Europe, recent reports indicated an expanding geographical distribution of Dermacentor reticulatus in Western Europe. Recently, the establishment of a D. reticulatus population in Belgium was described. D. reticulatus is an important vector of canine and equine babesiosis and can transmit several Rickettsia species, Coxiella burnetii and tick-borne encephalitis virus (TBEV), whilst Ixodes spp. are vectors of pathogens causing babesiosis, borreliosis, anaplasmosis, rickettsiosis and TBEV.
Methods
A survey was conducted in 2008-2009 to investigate the presence of different tick species and associated pathogens on dogs and cats in Belgium. Ticks were collected from dogs and cats in 75 veterinary practices, selected by stratified randomization. All collected ticks were morphologically determined and analysed for the presence of Babesia spp., Borrelia spp., Anaplasma phagocytophilum and Rickettsia DNA.
Results
In total 2373 ticks were collected from 647 dogs and 506 cats. Ixodes ricinus (76.4%) and I. hexagonus (22.6%) were the predominant species. Rhipicephalus sanguineus (0.3%) and D. reticulatus (0.8%) were found in low numbers on dogs only. All dogs infested with R. sanguineus had a recent travel history, but D. reticulatus were collected from a dog without a history of travelling abroad. Of the collected Ixodes ticks, 19.5% were positive for A. phagocytophilum and 10.1% for Borrelia spp. (B. afzelii, B. garinii, B. burgdorferi s.s., B. lusitaniae, B. valaisiana and B. spielmanii). Rickettsia helvetica was found in 14.1% of Ixodes ticks. All Dermacentor ticks were negative for all the investigated pathogens, but one R. sanguineus tick was positive for Rickettsia massiliae.
Conclusion
D. reticulatus was confirmed to be present as an indigenous parasite in Belgium. B. lusitaniae and R. helvetica were detected in ticks in Belgium for the first time.
doi:10.1186/1756-3305-6-183
PMCID: PMC3688525  PMID: 23777784
Ticks; Dermacentor reticulatus; Dogs; Cats; Belgium; Borrelia; Anaplasma; Rickettsia
5.  Indirect Immunofluorescence Assay for the Simultaneous Detection of Antibodies against Clinically Important Old and New World Hantaviruses 
In order to detect serum antibodies against clinically important Old and New World hantaviruses simultaneously, multiparametric indirect immunofluorescence assays (IFAs) based on biochip mosaics were developed. Each of the mosaic substrates consisted of cells infected with one of the virus types Hantaan (HTNV), Puumala (PUUV), Seoul (SEOV), Saaremaa (SAAV), Dobrava (DOBV), Sin Nombre (SNV) or Andes (ANDV). For assay evaluation, serum IgG and IgM antibodies were analyzed using 184 laboratory-confirmed hantavirus-positive sera collected at six diagnostic centers from patients actively or previously infected with the following hantavirus serotypes: PUUV (Finland, n = 97); SEOV (China, n = 5); DOBV (Romania, n = 7); SNV (Canada, n = 23); ANDV (Argentina and Chile, n = 52). The control panel comprised 89 sera from healthy blood donors. According to the reference tests, all 184 patient samples were seropositive for hantavirus-specific IgG (n = 177; 96%) and/or IgM (n = 131; 72%), while all control samples were tested negative. In the multiparametric IFA applied in this study, 183 (99%) of the patient sera were IgG and 131 (71%) IgM positive (accordance with the reference tests: IgG, 96%; IgM, 93%). Overall IFA sensitivity for combined IgG and IgM analysis amounted to 100% for all serotypes, except for SNV (96%). Of the 89 control sera, 2 (2%) showed IgG reactivity against the HTNV substrate, but not against any other hantavirus. Due to the high cross-reactivity of hantaviral nucleocapsid proteins, endpoint titrations were conducted, allowing serotype determination in >90% of PUUV- and ANDV-infected patients. Thus, multiparametric IFA enables highly sensitive and specific serological diagnosis of hantavirus infections and can be used to differentiate PUUV and ANDV infection from infections with Murinae-borne hantaviruses (e.g. DOBV and SEOV).
Author Summary
Hantaviruses are the causative agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) — serious emerging diseases, with case-fatality rates of up to 15% and about 35%, respectively. So far, over 21 human pathogenic serotypes have been described, which are classified into New World (circulating in the Americas) and Old World (Asia and Europe) hantaviruses. The prodromal phase of hantavirus infections — fever, myalgia, headache and gastrointestinal symptoms — is indistinguishable from those of many other viral infections. The cardiopulmonary phase of HFRS and diuretic phase of HFRS mimic the acute respiratory distress syndrome and renal failure, respectively. In this context, clinical diagnosis has to be confirmed by laboratory testing, which is predominantly based on serology. Although there is an increasing awareness of hantaviruses, infections are still underdiagnosed, in part due to a lack of available standardized serological assays. This study evaluated a commercial multiparametric indirect immunofluorescence assay for the simultaneous detection of antibodies against clinically important Old World (Hantaan, Puumala, Seoul, Saaremaa and Dobrava) and New World (Sin Nombre and Andes) hantaviruses. Test performance was found to be comparable to established highly sensitive and specific in-house assays.
doi:10.1371/journal.pntd.0002157
PMCID: PMC3617148  PMID: 23593524
6.  Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics 
Archives of Virology  2012;158(3):521-529.
Dobrava-Belgrade virus (DOBV) is a human pathogen that has evolved in, and is hosted by, mice of several species of the genus Apodemus. We propose a subdivision of the species Dobrava-Belgrade virus into four related genotypes – Dobrava, Kurkino, Saaremaa, and Sochi – that show characteristic differences in their phylogeny, specific host reservoirs, geographical distribution, and pathogenicity for humans.
doi:10.1007/s00705-012-1514-5
PMCID: PMC3586401  PMID: 23090188
7.  A multi-level analysis of the relationship between environmental factors and questing Ixodes ricinus dynamics in Belgium 
Parasites & Vectors  2012;5:149.
Background
Ticks are the most important pathogen vectors in Europe. They are known to be influenced by environmental factors, but these links are usually studied at specific temporal or spatial scales. Focusing on Ixodes ricinus in Belgium, we attempt to bridge the gap between current “single-sided” studies that focus on temporal or spatial variation only. Here, spatial and temporal patterns of ticks are modelled together.
Methods
A multi-level analysis of the Ixodes ricinus patterns in Belgium was performed. Joint effects of weather, habitat quality and hunting on field sampled tick abundance were examined at two levels, namely, sampling level, which is associated with temporal dynamics, and site level, which is related to spatial dynamics. Independent variables were collected from standard weather station records, game management data and remote sensing-based land cover data.
Results
At sampling level, only a marginally significant effect of daily relative humidity and temperature on the abundance of questing nymphs was identified. Average wind speed of seven days prior to the sampling day was found important to both questing nymphs and adults. At site level, a group of landscape-level forest fragmentation indices were highlighted for both questing nymph and adult abundance, including the nearest-neighbour distance, the shape and the aggregation level of forest patches. No cross-level effects or spatial autocorrelation were found.
Conclusions
Nymphal and adult ticks responded differently to environmental variables at different spatial and temporal scales. Our results can advise spatio-temporal extents of environment data collection for continuing empirical investigations and potential parameters for biological tick models.
doi:10.1186/1756-3305-5-149
PMCID: PMC3419667  PMID: 22830528
Ixodes ricinus; Spatio-temporal dynamics; Multi-level analysis; Environment; Belgium
8.  Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe 
Parasites & Vectors  2012;5:74.
Background
Neoehrlichia mikurensis s an emerging and vector-borne zoonosis: The first human disease cases were reported in 2010. Limited information is available about the prevalence and distribution of Neoehrlichia mikurensis in Europe, its natural life cycle and reservoir hosts. An Ehrlichia-like schotti variant has been described in questing Ixodes ricinus ticks, which could be identical to Neoehrlichia mikurensis.
Methods
Three genetic markers, 16S rDNA, gltA and GroEL, of Ehrlichia schotti-positive tick lysates were amplified, sequenced and compared to sequences from Neoehrlichia mikurensis. Based on these DNA sequences, a multiplex real-time PCR was developed to specifically detect Neoehrlichia mikurensis in combination with Anaplasma phagocytophilum in tick lysates. Various tick species from different life-stages, particularly Ixodes ricinus nymphs, were collected from the vegetation or wildlife. Tick lysates and DNA derived from organs of wild rodents were tested by PCR-based methods for the presence of Neoehrlichia mikurensis. Prevalence of Neoehrlichia mikurensis was calculated together with confidence intervals using Fisher's exact test.
Results
The three genetic markers of Ehrlichia schotti-positive field isolates were similar or identical to Neoehrlichia mikurensis. Neoehrlichia mikurensis was found to be ubiquitously spread in the Netherlands and Belgium, but was not detected in the 401 tick samples from the UK. Neoehrlichia mikurensis was found in nymphs and adult Ixodes ricinus ticks, but neither in their larvae, nor in any other tick species tested. Neoehrlichia mikurensis was detected in diverse organs of some rodent species. Engorging ticks from red deer, European mouflon, wild boar and sheep were found positive for Neoehrlichia mikurensis.
Conclusions
Ehrlichia schotti is similar, if not identical, to Neoehrlichia mikurensis. Neoehrlichia mikurensis is present in questing Ixodes ricinus ticks throughout the Netherlands and Belgium. We propose that Ixodes ricinus can transstadially, but not transovarially, transmit this microorganism, and that different rodent species may act as reservoir hosts. These data further imply that wildlife and humans are frequently exposed to Neoehrlichia mikurensis-infected ticks through tick bites. Future studies should aim to investigate to what extent Neoehrlichia mikurensis poses a risk to public health.
doi:10.1186/1756-3305-5-74
PMCID: PMC3395572  PMID: 22515314
Vector-borne disease; Emerging zoonoses; Candidatus N. mikurensis; I. ricinus; Anaplasma phagocytophylum
9.  In Search for Factors that Drive Hantavirus Epidemics 
In Europe, hantaviruses (Bunyaviridae) are small mammal-associated zoonotic and emerging pathogens that can cause hemorrhagic fever with renal syndrome (HFRS). Puumala virus, the main etiological agent carried by the bank vole Myodes glareolus is responsible for a mild form of HFRS while Dobrava virus induces less frequent but more severe cases of HFRS. Since 2000 in Europe, more than 3000 cases of HFRS have been recorded, in average, each year, which is nearly double compared to the previous decade. In addition to this upside long-term trend, significant oscillations occur. Epidemic years appear, usually every 2–4 years, with an increased incidence, generally in localized hot spots. Moreover, the virus has been identified in new areas in the recent years. A great number of surveys have been carried out in order to assess the prevalence of the infection in the reservoir host and to identify links with different biotic and abiotic factors. The factors that drive the infections are related to the density and diversity of bank vole populations, prevalence of infection in the reservoir host, viral excretion in the environment, survival of the virus outside its host, and human behavior, which affect the main transmission virus route through inhalation of infected rodent excreta. At the scale of a rodent population, the prevalence of the infection increases with the age of the individuals but also other parameters, such as sex and genetic variability, interfere. The contamination of the environment may be correlated to the number of newly infected rodents, which heavily excrete the virus. The interactions between these different parameters add to the complexity of the situation and explain the absence of reliable tools to predict epidemics. In this review, the factors that drive the epidemics of hantaviruses in Middle Europe are discussed through a panorama of the epidemiological situation in Belgium, France, and Germany.
doi:10.3389/fphys.2012.00237
PMCID: PMC3429022  PMID: 22934002
Belgium; France; Germany; hantavirus; HFRS; NE; biotic factors; abiotic factors
10.  Determinants of the geographic distribution of Puumala virus and Lyme borreliosis infections in Belgium 
Background
Vector-borne and zoonotic diseases generally display clear spatial patterns due to different space-dependent factors. Land cover and land use influence disease transmission by controlling both the spatial distribution of vectors or hosts, and the probability of contact with susceptible human populations. The objective of this study was to combine environmental and socio-economic factors to explain the spatial distribution of two emerging human diseases in Belgium, Puumala virus (PUUV) and Lyme borreliosis. Municipalities were taken as units of analysis.
Results
Negative binomial regressions including a correction for spatial endogeneity show that the spatial distribution of PUUV and Lyme borreliosis infections are associated with a combination of factors linked to the vector and host populations, to human behaviours, and to landscape attributes. Both diseases are associated with the presence of forests, which are the preferred habitat for vector or host populations. The PUUV infection risk is higher in remote forest areas, where the level of urbanisation is low, and among low-income populations. The Lyme borreliosis transmission risk is higher in mixed landscapes with forests and spatially dispersed houses, mostly in wealthy peri-urban areas. The spatial dependence resulting from a combination of endogenous and exogenous processes could be accounted for in the model on PUUV but not for Lyme borreliosis.
Conclusion
A large part of the spatial variation in disease risk can be explained by environmental and socio-economic factors. The two diseases not only are most prevalent in different regions but also affect different groups of people. Combining these two criteria may increase the efficiency of information campaigns through appropriate targeting.
doi:10.1186/1476-072X-6-15
PMCID: PMC1867807  PMID: 17474974

Results 1-10 (10)