PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (39)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Riboregulators and the role of Hfq in photosynthetic bacteria 
RNA Biology  2014;11(5):413-426.
Anoxygenic and oxygenic bacteria directly convert solar energy into biomass using photosynthesis. The formation and composition of photosynthetic complexes has to be tightly controlled in response to environmental conditions, as exposure to sunlight can be harmful due to the generation of reactive oxygen species and the damaging effects of UV irradiation. Therefore, photosynthetic bacteria are exposed to a particular set of regulatory challenges in addition to those that also affect other bacteria, requiring sophisticated regulatory systems. Indeed, hundreds of potential regulatory RNAs have been identified in photosynthetic model bacteria as well as antisense RNAs (asRNAs) of up to several kb in length that protect certain mRNAs from degradation. The trans-acting small non-coding RNAs (sRNAs), PcrZ and PsrR1, control pigment and photosystem biogenesis in Rhodobacter sphaeroides and cyanobacteria, respectively. The asRNAs IsrR and As1_flv4 act as negative regulators and the asRNAs PsbA2R and PsbA3R as positive effectors of photosynthesis gene expression in Synechocystis 6803.
doi:10.4161/rna.28035
PMCID: PMC4152350  PMID: 24651049
antisense transcription; cyanobacteria; differential RNA-seq; gene expression regulation; photosynthesis; α-proteobacteria
2.  Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803 
Background
Cyanobacteria are phototrophic prokaryotes that convert inorganic carbon as CO2 into organic compounds at the expense of light energy. They need only inorganic nutrients and can be cultivated to high densities using non-arable land and seawater. This has made cyanobacteria attractive organisms for the production of biofuels and chemical feedstock. Synechocystis sp. PCC 6803 is one of the most widely used cyanobacterial model strains. Based on its available genome sequence and genetic tools, Synechocystis has been genetically modified to produce different biotechnological products. Efficient isoprene production is an attractive goal because this compound is widely used as chemical feedstock.
Results
Here, we report on our attempts to generate isoprene-producing strains of Synechocystis using a plasmid-based strategy. As previously reported, a codon-optimized plant isoprene synthase (IspS) was expressed under the control of different Synechocystis promoters that ensure strong constitutive or light-regulated ispS expression. The expression of the ispS gene was quantified by qPCR and Western blotting, while the amount of isoprene was quantified using GC—MS. In addition to isoprene measurements in the headspace of closed culture vessels, single photon ionization time-of-flight mass spectrometry (SPI-MS) was applied, which allowed online measurements of isoprene production in open-cultivation systems under various conditions. Under standard conditions, a good correlation existed between ispS expression and isoprene production rate. The cultivation of isoprene production strains under NaCl-supplemented conditions decreased isoprene production despite enhanced ispS mRNA levels. The characterization of the metabolome of isoprene-producing strains indicated that isoprene production might be limited by insufficient precursor levels. Transcriptomic analysis revealed the upregulation of mRNA and regulatory RNAs characteristic of acclimation to metabolic stress.
Conclusions
Our best production strains produced twofold higher isoprene amounts in the presence of low NaCl concentrations than previously reported strains. These results will guide future attempts to establish isoprene production in cyanobacterial hosts.
Electronic supplementary material
The online version of this article (doi:10.1186/s13068-016-0503-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s13068-016-0503-4
PMCID: PMC4836186  PMID: 27096007
Cyanobacteria; Glucosylglycerol; Isoprene; Metabolome; Promoter; Transcriptome; Salinity
3.  Finished Genome Sequence of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6714 
Genome Announcements  2014;2(4):e00757-14.
Synechocystis sp. strain PCC 6714 is a unicellular cyanobacterium closely related to the popular model organism Synechocystis sp. strain PCC 6803. A combination of PacBio SMRT and Illumina GAIIx data results in a highly accurate finished genome sequence that provides a reliable resource for further comparative analyses.
doi:10.1128/genomeA.00757-14
PMCID: PMC4118070  PMID: 25081267
4.  Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress 
Applied and Environmental Microbiology  2015;81(15):5212-5222.
Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone.
doi:10.1128/AEM.01062-15
PMCID: PMC4495225  PMID: 26025890
5.  Adaptation and modification of three CRISPR loci in two closely related cyanobacteria 
RNA Biology  2013;10(5):852-864.
An RNA-based screen was performed to reveal a possible evolutionary scenario for the CRISPR-Cas systems in two cyanobacterial model strains. Following the analysis of a draft genome sequence of Synechocystis sp PCC6714, three different CRISPR-Cas systems were characterized that have different degrees of relatedness to another three CRISPR-Cas systems in Synechocystis sp PCC6803. A subtype III-B system was identified that is extremely conserved between both strains. Strong signals in northern hybridizations and the presence of different spacers (but identical repeats) indicated this system to be active, despite the absence of a known endonuclease candidate gene involved in the maturation of its crRNAs in the two strains. The other two systems were found to differ significantly from each other, with different sets of repeat-spacer arrays and different Cas genes. In view of the otherwise very close relatedness of the two analyzed strains, this is suggestive of an unknown mechanism involved in the replacement of CRISPR-Cas cassettes as a whole. Further RNA analyses revealed the accumulation of crRNAs to be impacted by environmental conditions critical for photoautotropic growth. All six systems are associated with a gene for a possible transcriptional repressor. Indeed, we identified one of these genes, sll7009, as encoding a negative regulator specific for the CRISPR1 subtype I-D system in Synechocystis sp PCC6803.
doi:10.4161/rna.24160
PMCID: PMC3737342  PMID: 23535141
comparative genomics; CRISPR; cyanobacteria; defense mechanisms; crRNA maturation; transcriptional regulator
6.  Draft Genome Sequence of the Filamentous Cyanobacterium Leptolyngbya sp. Strain Heron Island J, Exhibiting Chromatic Acclimation 
Genome Announcements  2014;2(1):e01166-13.
Leptolyngbya sp. strain Heron Island is a cyanobacterium exhibiting chromatic acclimation. However, this strain has strong interactions with other bacteria, making it impossible to obtain axenic cultures for sequencing. A protocol involving an analysis of tetranucleotide frequencies, G+C content, and BLAST searches has been described for separating the cyanobacterial scaffolds from those of its cooccurring bacteria.
doi:10.1128/genomeA.01166-13
PMCID: PMC3916487  PMID: 24503993
7.  Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization 
In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.
doi:10.3389/fbioe.2014.00024
PMCID: PMC4094844  PMID: 25022427
alkane biosynthesis; start sites of transcription; cyanobacteria; operon; promoter; sRNA
8.  Sequential splicing of a group II twintron in the marine cyanobacterium Trichodesmium 
Scientific Reports  2015;5:16829.
The marine cyanobacterium Trichodesmium is unusual in its genomic architecture as 40% of the genome is occupied by non-coding DNA. Although the majority of it is transcribed into RNA, it is not well understood why such a large non-coding genome fraction is maintained. Mobile genetic elements can contribute to genome expansion. Many bacteria harbor introns whereas twintrons, introns-in-introns, are rare and not known to interrupt protein-coding genes in bacteria. Here we show the sequential in vivo splicing of a 5400 nt long group II twintron interrupting a highly conserved gene that is associated with RNase HI in some cyanobacteria, but free-standing in others, including Trichodesmium erythraeum. We show that twintron splicing results in a putatively functional mRNA. The full genetic arrangement was found conserved in two geospatially distinct metagenomic datasets supporting its functional relevance. We further show that splicing of the inner intron yields the free intron as a true circle. This reaction requires the spliced exon reopening (SER) reaction to provide a free 5′ exon. The fact that Trichodesmium harbors a functional twintron fits in well with the high intron load of these genomes, and suggests peculiarities in its genetic machinery permitting such arrangements.
doi:10.1038/srep16829
PMCID: PMC4649490  PMID: 26577185
9.  Comparative transcriptomics of two environmentally relevant cyanobacteria reveals unexpected transcriptome diversity 
The ISME Journal  2014;8(10):2056-2068.
Prochlorococcus is a genus of abundant and ecologically important marine cyanobacteria. Here, we present a comprehensive comparison of the structure and composition of the transcriptomes of two Prochlorococcus strains, which, despite their similarities, have adapted their gene pool to specific environmental constraints. We present genome-wide maps of transcriptional start sites (TSS) for both organisms, which are representatives of the two most diverse clades within the two major ecotypes adapted to high- and low-light conditions, respectively. Our data suggest antisense transcription for three-quarters of all genes, which is substantially more than that observed in other bacteria. We discovered hundreds of TSS within genes, most notably within 16 of the 29 prochlorosin genes, in strain MIT9313. A direct comparison revealed very little conservation in the location of TSS and the nature of non-coding transcripts between both strains. We detected extremely short 5′ untranslated regions with a median length of only 27 and 29 nt for MED4 and MIT9313, respectively, and for 8% of all protein-coding genes the median distance to the start codon is only 10 nt or even shorter. These findings and the absence of an obvious Shine–Dalgarno motif suggest that leaderless translation and ribosomal protein S1-dependent translation constitute alternative mechanisms for translation initiation in Prochlorococcus. We conclude that genome-wide antisense transcription is a major component of the transcriptional output from these relatively small genomes and that a hitherto unrecognized high degree of complexity and variability of gene expression exists in their transcriptional architecture.
doi:10.1038/ismej.2014.57
PMCID: PMC4184020  PMID: 24739626
antisense RNA; cyanobacteria; dRNA-seq; Prochlorococcus; transcriptomics; prochlorosin
10.  Two separate modules of the conserved regulatory RNA AbcR1 address multiple target mRNAs in and outside of the translation initiation region 
RNA Biology  2014;11(5):624-640.
The small RNA AbcR1 regulates the expression of ABC transporters in the plant pathogen Agrobacterium tumefaciens, the plant symbiont Sinorhizobium meliloti, and the human pathogen Brucella abortus. A combination of proteomic and bioinformatic approaches suggested dozens of AbcR1 targets in A. tumefaciens. Several of these newly discovered targets are involved in the uptake of amino acids, their derivatives, and sugars. Among the latter is the periplasmic sugar-binding protein ChvE, a component of the virulence signal transduction system. We examined 16 targets and their interaction with AbcR1 in close detail. In addition to the previously described mRNA interaction site of AbcR1 (M1), the CopraRNA program predicted a second functional module (M2) as target-binding site. Both M1 and M2 contain single-stranded anti-SD motifs. Using mutated AbcR1 variants, we systematically tested by band shift experiments, which sRNA region is responsible for mRNA binding and gene regulation. On the target site, we find that AbcR1 interacts with some mRNAs in the translation initiation region and with others far into their coding sequence. Our data show that AbcR1 is a versatile master regulator of nutrient uptake systems in A. tumefaciens and related bacteria.
doi:10.4161/rna.29145
PMCID: PMC4152367  PMID: 24921646
regulatory RNA; small RNA; ABC transporter; RNA-RNA interaction; alpha-proteobacteria; Agrobacterium
11.  CoVennTree: a new method for the comparative analysis of large datasets 
The visualization of massive datasets, such as those resulting from comparative metatranscriptome analyses or the analysis of microbial population structures using ribosomal RNA sequences, is a challenging task. We developed a new method called CoVennTree (Comparative weighted Venn Tree) that simultaneously compares up to three multifarious datasets by aggregating and propagating information from the bottom to the top level and produces a graphical output in Cytoscape. With the introduction of weighted Venn structures, the contents and relationships of various datasets can be correlated and simultaneously aggregated without losing information. We demonstrate the suitability of this approach using a dataset of 16S rDNA sequences obtained from microbial populations at three different depths of the Gulf of Aqaba in the Red Sea. CoVennTree has been integrated into the Galaxy ToolShed and can be directly downloaded and integrated into the user instance.
doi:10.3389/fgene.2015.00043
PMCID: PMC4335276  PMID: 25750651
CoVennTree; weighted Venn diagram; VDS value; massive comparative analysis; rooted tree
12.  Complete genome determination and analysis of Acholeplasma oculi strain 19L, highlighting the loss of basic genetic features in the Acholeplasmataceae 
BMC Genomics  2014;15(1):931.
Background
Acholeplasma oculi belongs to the Acholeplasmataceae family, comprising the genera Acholeplasma and ‘Candidatus Phytoplasma’. Acholeplasmas are ubiquitous saprophytic bacteria. Several isolates are derived from plants or animals, whereas phytoplasmas are characterised as intracellular parasitic pathogens of plant phloem and depend on insect vectors for their spread. The complete genome sequences for eight strains of this family have been resolved so far, all of which were determined depending on clone-based sequencing.
Results
The A. oculi strain 19L chromosome was sequenced using two independent approaches. The first approach comprised sequencing by synthesis (Illumina) in combination with Sanger sequencing, while single molecule real time sequencing (PacBio) was used in the second. The genome was determined to be 1,587,120 bp in size. Sequencing by synthesis resulted in six large genome fragments, while the single molecule real time sequencing approach yielded one circular chromosome sequence. High-quality sequences were obtained by both strategies differing in six positions, which are interpreted as reliable variations present in the culture population. Our genome analysis revealed 1,471 protein-coding genes and highlighted the absence of the F1FO-type Na+ ATPase system and GroEL/ES chaperone. Comparison of the four available Acholeplasma sequences revealed a core-genome encoding 703 proteins and a pan-genome of 2,867 proteins.
Conclusions
The application of two state-of-the-art sequencing technologies highlights the potential of single molecule real time sequencing for complete genome determination. Comparative genome analyses revealed that the process of losing particular basic genetic features during genome reduction occurs in both genera, as indicated for several phytoplasma strains and at least A. oculi. The loss of the F1FO-type Na+ ATPase system may separate Acholeplasmataceae from other Mollicutes, while the loss of those genes encoding the chaperone GroEL/ES is not a rare exception in this bacterial class.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-931) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-931
PMCID: PMC4221730  PMID: 25344468
13.  Daily Expression Pattern of Protein-Encoding Genes and Small Noncoding RNAs in Synechocystis sp. Strain PCC 6803 
Applied and Environmental Microbiology  2014;80(17):5195-5206.
Many organisms harbor circadian clocks with periods close to 24 h. These cellular clocks allow organisms to anticipate the environmental cycles of day and night by synchronizing circadian rhythms with the rising and setting of the sun. These rhythms originate from the oscillator components of circadian clocks and control global gene expression and various cellular processes. The oscillator of photosynthetic cyanobacteria is composed of three proteins, KaiA, KaiB, and KaiC, linked to a complex regulatory network. Synechocystis sp. strain PCC 6803 possesses the standard cyanobacterial kaiABC gene cluster plus multiple kaiB and kaiC gene copies and antisense RNAs for almost every kai transcript. However, there is no clear evidence of circadian rhythms in Synechocystis sp. PCC 6803 under various experimental conditions. It is also still unknown if and to what extent the multiple kai gene copies and kai antisense RNAs affect circadian timing. Moreover, a large number of small noncoding RNAs whose accumulation dynamics over time have not yet been monitored are known for Synechocystis sp. PCC 6803. Here we performed a 48-h time series transcriptome analysis of Synechocystis sp. PCC 6803, taking into account periodic light-dark phases, continuous light, and continuous darkness. We found that expression of functionally related genes occurred in different phases of day and night. Moreover, we found day-peaking and night-peaking transcripts among the small RNAs; in particular, the amounts of kai antisense RNAs correlated or anticorrelated with those of their respective kai target mRNAs, pointing toward the regulatory relevance of these antisense RNAs. Surprisingly, we observed that the amounts of 16S and 23S rRNAs in this cyanobacterium fluctuated in light-dark periods, showing maximum accumulation in the dark phase. Importantly, the amounts of all transcripts, including small noncoding RNAs, did not show any rhythm under continuous light or darkness, indicating the absence of circadian rhythms in Synechocystis.
doi:10.1128/AEM.01086-14
PMCID: PMC4136122  PMID: 24928881
14.  The primary transcriptome of the marine diazotroph Trichodesmium erythraeum IMS101 
Scientific Reports  2014;4:6187.
Blooms of the dinitrogen-fixing marine cyanobacterium Trichodesmium considerably contribute to new nitrogen inputs into tropical oceans. Intriguingly, only 60% of the Trichodesmium erythraeum IMS101 genome sequence codes for protein, compared with ~85% in other sequenced cyanobacterial genomes. The extensive non-coding genome fraction suggests space for an unusually high number of unidentified, potentially regulatory non-protein-coding RNAs (ncRNAs). To identify the transcribed fraction of the genome, here we present a genome-wide map of transcriptional start sites (TSS) at single nucleotide resolution, revealing the activity of 6,080 promoters. We demonstrate that T. erythraeum has the highest number of actively splicing group II introns and the highest percentage of TSS yielding ncRNAs of any bacterium examined to date. We identified a highly transcribed retroelement that serves as template repeat for the targeted mutation of at least 12 different genes by mutagenic homing. Our findings explain the non-coding portion of the T. erythraeum genome by the transcription of an unusually high number of non-coding transcripts in addition to the known high incidence of transposable elements. We conclude that riboregulation and RNA maturation-dependent processes constitute a major part of the Trichodesmium regulatory apparatus.
doi:10.1038/srep06187
PMCID: PMC4143802  PMID: 25155278
15.  The diversity of small non-coding RNAs in the diatom Phaeodactylum tricornutum 
BMC Genomics  2014;15(1):698.
Background
Marine diatoms constitute a major component of eukaryotic phytoplankton and stand at the crossroads of several evolutionary lineages. These microalgae possess peculiar genomic features and novel combinations of genes acquired from bacterial, animal and plant ancestors. Furthermore, they display both DNA methylation and gene silencing activities. Yet, the biogenesis and regulatory function of small RNAs (sRNAs) remain ill defined in diatoms.
Results
Here we report the first comprehensive characterization of the sRNA landscape and its correlation with genomic and epigenomic information in Phaeodactylum tricornutum. The majority of sRNAs is 25 to 30 nt-long and maps to repetitive and silenced Transposable Elements marked by DNA methylation. A subset of this population also targets DNA methylated protein-coding genes, suggesting that gene body methylation might be sRNA-driven in diatoms. Remarkably, 25-30 nt sRNAs display a well-defined and unprecedented 180 nt-long periodic distribution at several highly methylated regions that awaits characterization. While canonical miRNAs are not detectable, other 21-25 nt sRNAs of unknown origin are highly expressed. Besides, non-coding RNAs with well-described function, namely tRNAs and U2 snRNA, constitute a major source of 21-25 nt sRNAs and likely play important roles under stressful environmental conditions.
Conclusions
P. tricornutum has evolved diversified sRNA pathways, likely implicated in the regulation of largely still uncharacterized genetic and epigenetic processes. These results uncover an unexpected complexity of diatom sRNA population and previously unappreciated features, providing new insights into the diversification of sRNA-based processes in eukaryotes.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-698) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-698
PMCID: PMC4247016  PMID: 25142710
Diatoms; Phaeodactylum tricornutum; Small RNAs; tRNAs; U2 snRNA; Transposable Elements; DNA methylation; Periodic small RNAs distribution
16.  Comparative Analysis of the Primary Transcriptome of Synechocystis sp. PCC 6803 
RNA-seq and especially differential RNA-seq-type transcriptomic analyses (dRNA-seq) are powerful analytical tools, as they not only provide insights into gene expression changes but also provide detailed information about all promoters active at a given moment, effectively giving a deep insight into the transcriptional landscape. Synechocystis sp. PCC 6803 (Synechocystis 6803) is a unicellular model cyanobacterium that is widely used in research fields from ecology, photophysiology to systems biology, modelling and biotechnology. Here, we analysed the response of the Synechocystis 6803 primary transcriptome to different, environmentally relevant stimuli. We established genome-wide maps of the transcriptional start sites active under 10 different conditions relevant for photosynthetic growth and identified 4,091 transcriptional units, which provide information about operons, 5′ and 3′ untranslated regions (UTRs). Based on a unique expression factor, we describe regulons and relevant promoter sequences at single-nucleotide resolution. Finally, we report several sRNAs with an intriguing expression pattern and therefore likely function, specific for carbon depletion (CsiR1), nitrogen depletion (NsiR4), phosphate depletion (PsiR1), iron stress (IsaR1) or photosynthesis (PsrR1). This dataset is accompanied by comprehensive information providing extensive visualization and data access to allow an easy-to-use approach for the design of experiments, the incorporation into modelling studies of the regulatory system and for comparative analyses.
doi:10.1093/dnares/dsu018
PMCID: PMC4195498  PMID: 24935866
comparative transcriptome analysis; cyanobacteria; regulation of gene expression; sRNA; transcriptional unit
17.  CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains 
Nucleic Acids Research  2014;42(Web Server issue):W119-W123.
CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de.
doi:10.1093/nar/gku359
PMCID: PMC4086077  PMID: 24838564
18.  Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803 
Background
The production of biofuels in photosynthetic microalgae and cyanobacteria is a promising alternative to the generation of fuels from fossil resources. To be economically competitive, producer strains need to be established that synthesize the targeted product at high yield and over a long time. Engineering cyanobacteria into forced fuel producers should considerably interfere with overall cell homeostasis, which in turn might counteract productivity and sustainability of the process. Therefore, in-depth characterization of the cellular response upon long-term production is of high interest for the targeted improvement of a desired strain.
Results
The transcriptome-wide response to continuous ethanol production was examined in Synechocystis sp. PCC6803 using high resolution microarrays. In two independent experiments, ethanol production rates of 0.0338% (v/v) ethanol d-1 and 0.0303% (v/v) ethanol d-1 were obtained over 18 consecutive days, measuring two sets of biological triplicates in fully automated photobioreactors. Ethanol production caused a significant (~40%) delay in biomass accumulation, the development of a bleaching phenotype and a down-regulation of light harvesting capacity. However, microarray analyses performed at day 4, 7, 11 and 18 of the experiment revealed only three mRNAs with a strongly modified accumulation level throughout the course of the experiment. In addition to the overexpressed adhA (slr1192) gene, this was an approximately 4 fold reduction in cpcB (sll1577) and 3 to 6 fold increase in rps8 (sll1809) mRNA levels. Much weaker modifications of expression level or modifications restricted to day 18 of the experiment were observed for genes involved in carbon assimilation (Ribulose bisphosphate carboxylase and Glutamate decarboxylase). Molecular analysis of the reduced cpcB levels revealed a post-transcriptional processing of the cpcBA operon mRNA leaving a truncated mRNA cpcA* likely not competent for translation. Moreover, western blots and zinc-enhanced bilin fluorescence blots confirmed a severe reduction in the amounts of both phycocyanin subunits, explaining the cause of the bleaching phenotype.
Conclusions
Changes in gene expression upon induction of long-term ethanol production in Synechocystis sp. PCC6803 are highly specific. In particular, we did not observe a comprehensive stress response as might have been expected.
doi:10.1186/1754-6834-7-21
PMCID: PMC3925133  PMID: 24502290
Biofuel; Cyanobacteria; Ethanol production; Synechocystis; Metabolic engineering; Synthetic biology; Transcription
19.  Comparative Genome Analysis of the Closely Related Synechocystis Strains PCC 6714 and PCC 6803 
Synechocystis sp. PCC 6803 is the most popular cyanobacterial model for prokaryotic photosynthesis and for metabolic engineering to produce biofuels. Genomic and transcriptomic comparisons between closely related bacteria are powerful approaches to infer insights into their metabolic potentials and regulatory networks. To enable a comparative approach, we generated the draft genome sequence of Synechocystis sp. PCC 6714, a closely related strain of 6803 (16S rDNA identity 99.4%) that also is amenable to genetic manipulation. Both strains share 2838 protein-coding genes, leaving 845 unique genes in Synechocystis sp. PCC 6803 and 895 genes in Synechocystis sp. PCC 6714. The genetic differences include a prophage in the genome of strain 6714, a different composition of the pool of transposable elements, and a ∼40 kb genomic island encoding several glycosyltransferases and transport proteins. We verified several physiological differences that were predicted on the basis of the respective genome sequence. Strain 6714 exhibited a lower tolerance to Zn2+ ions, associated with the lack of a corresponding export system and a lowered potential of salt acclimation due to the absence of a transport system for the re-uptake of the compatible solute glucosylglycerol. These new data will support the detailed comparative analyses of this important cyanobacterial group than has been possible thus far. Genome information for Synechocystis sp. PCC 6714 has been deposited in Genbank (accession no AMZV01000000).
doi:10.1093/dnares/dst055
PMCID: PMC4060947  PMID: 24408876
comparative genomics; cyanophages; genome sequence; prophage; salt acclimation
20.  Non-coding RNAs in marine Synechococcus and their regulation under environmentally relevant stress conditions 
The ISME Journal  2012;6(8):1544-1557.
Regulatory small RNAs (sRNAs) have crucial roles in the adaptive responses of bacteria to changes in the environment. Thus far, potential regulatory RNAs have been studied mainly in marine picocyanobacteria in genetically intractable Prochlorococcus, rendering their molecular analysis difficult. Synechococcus sp. WH7803 is a model cyanobacterium, representative of the picocyanobacteria from the mesotrophic areas of the ocean. Similar to the closely related Prochlorococcus it possesses a relatively streamlined genome and a small number of genes, but is genetically tractable. Here, a comparative genome analysis was performed for this and four additional marine Synechococcus to identify the suite of possible sRNAs and other RNA elements. Based on the prediction and on complementary microarray profiling, we have identified several known as well as 32 novel sRNAs. Some sRNAs overlap adjacent coding regions, for instance for the central photosynthetic gene psbA. Several of these novel sRNAs responded specifically to environmentally relevant stress conditions. Among them are six sRNAs changing their accumulation level under cold stress, six responding to high light and two to iron limitation. Target predictions suggested genes encoding components of the light-harvesting apparatus as targets of sRNAs originating from genomic islands and that one of the iron-regulated sRNAs might be a functional homolog of RyhB. These data suggest that marine Synechococcus mount adaptive responses to these different stresses involving regulatory sRNAs.
doi:10.1038/ismej.2011.215
PMCID: PMC3400404  PMID: 22258101
cyanobacteria; gene expression regulation; light stress; regulatory RNA
21.  Dinitrogen fixation in a unicellular chlorophyll d-containing cyanobacterium 
The ISME Journal  2012;6(7):1367-1377.
Marine cyanobacteria of the genus Acaryochloris are the only known organisms that use chlorophyll d as a photosynthetic pigment. However, based on chemical sediment analyses, chlorophyll d has been recognized to be widespread in oceanic and lacustrine environments. Therefore it is highly relevant to understand the genetic basis for different physiologies and possible niche adaptation in this genus. Here we show that unlike all other known isolates of Acaryochloris, the strain HICR111A, isolated from waters around Heron Island, Great Barrier Reef, possesses a unique genomic region containing all the genes for the structural and enzymatically active proteins of nitrogen fixation and cofactor biosynthesis. Their phylogenetic analysis suggests a close relation to nitrogen fixation genes from certain other marine cyanobacteria. We show that nitrogen fixation in Acaryochloris sp. HICR111A is regulated in a light–dark-dependent fashion. We conclude that nitrogen fixation, one of the most complex physiological traits known in bacteria, might be transferred among oceanic microbes by horizontal gene transfer more often than anticipated so far. Our data show that the two powerful processes of oxygenic photosynthesis and nitrogen fixation co-occur in one and the same cell also in this branch of marine microbes and characterize Acaryochloris as a physiologically versatile inhabitant of an ecological niche, which is primarily driven by the absorption of far-red light.
doi:10.1038/ismej.2011.199
PMCID: PMC3379635  PMID: 22237545
Acaryochloris; chlorophyll d; cyanobacteria; dinitrogen fixation; microbial diversity; nitrogenase
22.  Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis 
PLoS ONE  2013;8(3):e60224.
Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems.
doi:10.1371/journal.pone.0060224
PMCID: PMC3610870  PMID: 23555932
23.  CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing Pathways Involving at Least Two Cas6 and a Cmr2 Protein 
PLoS ONE  2013;8(2):e56470.
The CRISPR-Cas (Clustered Regularly Interspaced Short Palindrome Repeats – CRISPR associated proteins) system provides adaptive immunity in archaea and bacteria. A hallmark of CRISPR-Cas is the involvement of short crRNAs that guide associated proteins in the destruction of invading DNA or RNA. We present three fundamentally distinct processing pathways in the cyanobacterium Synechocystis sp. PCC6803 for a subtype I-D (CRISPR1), and two type III systems (CRISPR2 and CRISPR3), which are located together on the plasmid pSYSA. Using high-throughput transcriptome analyses and assays of transcript accumulation we found all CRISPR loci to be highly expressed, but the individual crRNAs had profoundly varying abundances despite single transcription start sites for each array. In a computational analysis, CRISPR3 spacers with stable secondary structures displayed a greater ratio of degradation products. These structures might interfere with the loading of the crRNAs into RNP complexes, explaining the varying abundancies. The maturation of CRISPR1 and CRISPR2 transcripts depends on at least two different Cas6 proteins. Mutation of gene sll7090, encoding a Cmr2 protein led to the disappearance of all CRISPR3-derived crRNAs, providing in vivo evidence for a function of Cmr2 in the maturation, regulation of expression, Cmr complex formation or stabilization of CRISPR3 transcripts. Finally, we optimized CRISPR repeat structure prediction and the results indicate that the spacer context can influence individual repeat structures.
doi:10.1371/journal.pone.0056470
PMCID: PMC3575380  PMID: 23441196
24.  Iron Deprivation in Synechocystis: Inference of Pathways, Non-coding RNAs, and Regulatory Elements from Comprehensive Expression Profiling 
G3: Genes|Genomes|Genetics  2012;2(12):1475-1495.
Iron is an essential cofactor in many metabolic reactions. Mechanisms controlling iron homeostasis need to respond rapidly to changes in extracellular conditions, but they must also keep the concentration of intracellular iron under strict control to avoid the generation of damaging reactive oxygen species. Due to its role as a redox carrier in photosynthesis, the iron quota in cyanobacteria is about 10 times higher than in model enterobacteria. The molecular details of how such a high quota is regulated are obscure. Here we present experiments that shed light on the iron regulatory system in cyanobacteria. We measured time-resolved changes in gene expression after iron depletion in the cyanobacterium Synechocystis sp. PCC 6803 using a comprehensive microarray platform, monitoring both protein-coding and non-coding transcripts. In total, less than a fifth of all protein-coding genes were differentially expressed during the first 72 hr. Many of these proteins are associated with iron transport, photosynthesis, or ATP synthesis. Comparing our data with three previous studies, we identified a core set of 28 genes involved in iron stress response. Among them were genes important for assimilation of inorganic carbon, suggesting a link between the carbon and iron regulatory networks. Nine of the 28 genes have unknown functions and constitute key targets for further functional analysis. Statistical and clustering analyses identified 10 small RNAs, 62 antisense RNAs, four 5′UTRs, and seven intragenic elements as potential novel components of the iron regulatory network in Synechocystis. Hence, our genome-wide expression profiling indicates an unprecedented complexity in the iron regulatory network of cyanobacteria.
doi:10.1534/g3.112.003863
PMCID: PMC3516471  PMID: 23275872
iron homeostasis; expression profiling; regulation; non-coding RNA; cyanobacteria
25.  Microevolution in Cyanobacteria: Re-sequencing a Motile Substrain of Synechocystis sp. PCC 6803 
Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying photosynthesis, phototaxis, the production of biofuels and many other aspects. Here we present a re-sequencing study of the genome and seven plasmids of one of the most widely used Synechocystis sp. PCC 6803 substrains, the glucose tolerant and motile Moscow or ‘PCC-M’ strain, revealing considerable evidence for recent microevolution. Seven single nucleotide polymorphisms (SNPs) specifically shared between ‘PCC-M’ and the ‘PCC-N and PCC-P’ substrains indicate that ‘PCC-M’ belongs to the ‘PCC’ group of motile strains. The identified indels and SNPs in ‘PCC-M’ are likely to affect glucose tolerance, motility, phage resistance, certain stress responses as well as functions in the primary metabolism, potentially relevant for the synthesis of alkanes. Three SNPs in intergenic regions could affect the promoter activities of two protein-coding genes and one cis-antisense RNA. Two deletions in ‘PCC-M’ affect parts of clustered regularly interspaced short palindrome repeats-associated spacer-repeat regions on plasmid pSYSA, in one case by an unusual recombination between spacer sequences.
doi:10.1093/dnares/dss024
PMCID: PMC3514855  PMID: 23069868
CRISPR; genome sequence; plasmid; substrain; Synechocystis sp. PCC 6803

Results 1-25 (39)