PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Reduced inclination of cervical spine in a novel notebook screen system - implications for rehabilitation 
Background
Professional working at computer notebooks is associated with high requirements on the body posture in the seated position. By the high continuous static muscle stress resulting from this position at notebooks, professionals frequently working at notebooks for long hours are exposed to an increased risk of musculoskeletal complaints. Especially in subjects with back pain, new notebooks should be evaluated with a focus on rehabilitative issues.
Methods
In a field study a new notebook design with adjustable screen was analyzed and compared to standard notebook position.
Results
There are highly significant differences in the visual axis of individuals who are seated in the novel notebook position in comparison to the standard position. Also, differences are present between further alternative notebook positions. Testing of gender and glasses did not reveal influences.
Conclusion
This study demonstrates that notebooks with adjustable screen may be used to improve the posture. Future studies may focus on patients with musculoskeletal diseases.
doi:10.1186/1745-6673-6-30
PMCID: PMC3253038  PMID: 22118159
2.  Mobile Air Quality Studies (MAQS)-an international project 
Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"-exposure in relation to non-"traffic zone"-exposure.
Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including NO2, SO2, nanoparticles and ozone.
doi:10.1186/1745-6673-5-8
PMCID: PMC2865482  PMID: 20380704

Results 1-2 (2)