PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Bacterial Phylogenetic Reconstruction from Whole Genomes Is Robust to Recombination but Demographic Inference Is Not 
mBio  2014;5(6):e02158-14.
ABSTRACT
Phylogenetic inference in bacterial genomics is fundamental to understanding problems such as population history, antimicrobial resistance, and transmission dynamics. The field has been plagued by an apparent state of contradiction since the distorting effects of recombination on phylogeny were discovered more than a decade ago. Researchers persist with detailed phylogenetic analyses while simultaneously acknowledging that recombination seriously misleads inference of population dynamics and selection. Here we resolve this paradox by showing that phylogenetic tree topologies based on whole genomes robustly reconstruct the clonal frame topology but that branch lengths are badly skewed. Surprisingly, removing recombining sites can exacerbate branch length distortion caused by recombination.
IMPORTANCE
Phylogenetic tree reconstruction is a popular approach for understanding the relatedness of bacteria in a population from differences in their genome sequences. However, bacteria frequently exchange regions of their genomes by a process called homologous recombination, which violates a fundamental assumption of phylogenetic methods. Since many researchers continue to use phylogenetics for recombining bacteria, it is important to understand how recombination affects the conclusions drawn from these analyses. We find that whole-genome sequences afford great accuracy in reconstructing evolutionary relationships despite concerns surrounding the presence of recombination, but the branch lengths of the phylogenetic tree are indeed badly distorted. Surprisingly, methods to reduce the impact of recombination on branch lengths can exacerbate the problem.
doi:10.1128/mBio.02158-14
PMCID: PMC4251999  PMID: 25425237
2.  Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England 
Virology Journal  2013;10:335.
Background
Norovirus is the commonest cause of epidemic gastroenteritis among people of all ages. Outbreaks frequently occur in hospitals and the community, costing the UK an estimated £110 m per annum. An evolutionary explanation for periodic increases in norovirus cases, despite some host-specific post immunity is currently limited to the identification of obvious recombinants. Our understanding could be significantly enhanced by full length genome sequences for large numbers of intensively sampled viruses, which would also assist control and vaccine design. Our objective is to develop rapid, high-throughput, end-to-end methods yielding complete norovirus genome sequences. We apply these methods to recent English outbreaks, placing them in the wider context of the international norovirus epidemic of winter 2012.
Method
Norovirus sequences were generated from 28 unique clinical samples by Illumina RNA sequencing (RNA-Seq) of total faecal RNA. A range of de novo sequence assemblers were attempted. The best assembler was identified by validation against three replicate samples and two norovirus qPCR negative samples, together with an additional 20 sequences determined by PCR and fractional capillary sequencing. Phylogenetic methods were used to reconstruct evolutionary relationships from the whole genome sequences.
Results
Full length norovirus genomes were generated from 23/28 samples. 5/28 partial norovirus genomes were associated with low viral copy numbers. The de novo assembled sequences differed from sequences determined by capillary sequencing by <0.003%. Intra-host nucleotide sequence diversity was rare, but detectable by mapping short sequence reads onto its de novo assembled consensus. Genomes similar to the Sydney 2012 strain caused 78% (18/23) of cases, consistent with its previously documented association with the winter 2012 global outbreak. Interestingly, phylogenetic analysis and recombination detection analysis of the consensus sequences identified two related viruses as recombinants, containing sequences in prior circulation to Sydney 2012 in open reading frame (ORF) 2.
Conclusion
Our approach facilitates the rapid determination of complete norovirus genomes. This method provides high resolution of full norovirus genomes which, when coupled with detailed epidemiology, may improve the understanding of evolution and control of this important healthcare-associated pathogen.
doi:10.1186/1743-422X-10-335
PMCID: PMC3874643  PMID: 24220146
Norovirus; Outbreaks; Whole genome sequencing; Calicivirus; Gastroenteritis; Infection control
3.  Evolutionary Dynamics of Local Pandemic H1N1/2009 Influenza Virus Lineages Revealed by Whole-Genome Analysis 
Journal of Virology  2012;86(1):11-18.
Virus gene sequencing and phylogenetics can be used to study the epidemiological dynamics of rapidly evolving viruses. With complete genome data, it becomes possible to identify and trace individual transmission chains of viruses such as influenza virus during the course of an epidemic. Here we sequenced 153 pandemic influenza H1N1/09 virus genomes from United Kingdom isolates from the first (127 isolates) and second (26 isolates) waves of the 2009 pandemic and used their sequences, dates of isolation, and geographical locations to infer the genetic epidemiology of the epidemic in the United Kingdom. We demonstrate that the epidemic in the United Kingdom was composed of many cocirculating lineages, among which at least 13 were exclusively or predominantly United Kingdom clusters. The estimated divergence times of two of the clusters predate the detection of pandemic H1N1/09 virus in the United Kingdom, suggesting that the pandemic H1N1/09 virus was already circulating in the United Kingdom before the first clinical case. Crucially, three clusters contain isolates from the second wave of infections in the United Kingdom, two of which represent chains of transmission that appear to have persisted within the United Kingdom between the first and second waves. This demonstrates that whole-genome analysis can track in fine detail the behavior of individual influenza virus lineages during the course of a single epidemic or pandemic.
doi:10.1128/JVI.05347-11
PMCID: PMC3255882  PMID: 22013031
4.  Evolutionary History of Rabies in Ghana 
Rabies virus (RABV) is enzootic throughout Africa, with the domestic dog (Canis familiaris) being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages have been detected in West Africa. Lineage 2 is present throughout West Africa, whereas Africa 1a dominates in northern and eastern Africa, but has been detected in Nigeria and Gabon, and Africa 1b was previously absent from West Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected over an eighteen-month period (2007–2009). Phylogenetic analysis of the sequences obtained confirmed all viruses to be RABV, belonging to lineages previously detected in sub-Saharan Africa. However, unlike earlier reported studies that suggested a single lineage (Africa 2) circulates in West Africa, we identified viruses belonging to the Africa 2 lineage and both Africa 1 (a and b) sub-lineages. Phylogeographic Bayesian Markov chain Monte Carlo analysis of a 405 bp fragment of the RABV nucleoprotein gene from the 76 new sequences derived from Ghanaian animals suggest that within the Africa 2 lineage three clades co-circulate with their origins in other West African countries. Africa 1a is probably a western extension of a clade circulating in central Africa and the Africa 1b virus a probable recent introduction from eastern Africa. We also developed and tested a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of RABV in African laboratories. This RT-LAMP was shown to detect both Africa 1 and 2 viruses, including its adaptation to a lateral flow device format for product visualization. These data suggest that RABV epidemiology is more complex than previously thought in West Africa and that there have been repeated introductions of RABV into Ghana. This analysis highlights the potential problems of individual developing nations implementing rabies control programmes in the absence of a regional programme.
Author Summary
Rabies virus (RABV) is widespread throughout Africa, with the domestic dog being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages (Africa 1 and 2) are thought to circulate in western and central Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected from 2007 to 2009. In addition we developed and tested a novel molecular diagnostic assay for the detection of RABV, which offers an alternative RABV diagnostic tool for African laboratories. Our analysis of the genetic sequences obtained confirmed all viruses to be RABV, however, unlike previous studies we detected two sub-Saharan African RABV viruses (Africa 1 and 2) in this cohort, which included a single virus previously undetected in West Africa. We suggest that there has been repeated introduction of new RABVs into Ghana over a prolonged period from other West African countries and more recently from eastern Africa. These observations further highlight the problems of individual developing nations implementing rabies control programmes at a local, rather than regional level.
doi:10.1371/journal.pntd.0001001
PMCID: PMC3071360  PMID: 21483707

Results 1-4 (4)