PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  High Sugar Intake Does Not Exacerbate Metabolic Abnormalities or Cardiac Dysfunction in Genetic Cardiomyopathy 
Objective
High sugar intake increases heart disease risk in humans. In animals, sugar intake accelerates heart failure development via increased reactive oxygen species (ROS). Glucose 6-phosphate dehydrogenase (G6PD) can fuel ROS production by providing NADPH for superoxide generation by NADPH oxidase. On the other hand, G6PD also facilitates ROS scavenging via the glutathione pathway. We hypothesized that high sugar intake would increase flux through G6PD to increase myocardial [NADPH] and ROS, and accelerate cardiac dysfunction and death.
Research Methods & Procedures
Six-week old TO-2 hamsters, a nonhypertensive model of genetic cardiomyopathy caused by a δ-sarcoglycan mutation, were fed a long-term diet of either high starch or high sugar (57% of energy from sucrose+fructose).
Results
After 24 weeks, δ-sarcoglycan deficient animals displayed expected decreases in survival and cardiac function associated with cardiomyopathy (ejection fraction: control=68.7±4.5%; TO-2 starch=46.1±3.7, p<0.05 TO-2 starch vs control; TO-2 sugar=58.0±4.2%, N.S. vs TO-2 starch or control; median survival: TO-2 starch=278 days, TO-2 sugar=318 days, P=0.133). Although we expected high sugar intake to exacerbate cardiomyopathy, surprisingly there was no further decrease in ejection fraction or survival with high sugar compared to starch in cardiomyopathic animals. Cardiomyopathic animals had systemic and cardiac metabolic abnormalities (elevated serum lipids and glucose, and decreased myocardial oxidative enzymes) which were unaffected by diet. High sugar intake increased myocardial superoxide, but [NADPH] and lipid peroxidation were unaffected.
Conclusions
A sugar enriched diet did not exacerbate ventricular function, metabolic abnormalities, or survival in heart failure despite an increase in NADPH and superoxide production.
doi:10.1016/j.nut.2011.09.017
PMCID: PMC3327887  PMID: 22304857
heart failure; reactive oxygen species; δ-sarcoglycan; diet; sugar; fructose; sucrose
2.  High intake of saturated fat, but not polyunsaturated fat, improves survival in heart failure despite persistent mitochondrial defects 
Cardiovascular Research  2011;93(1):24-32.
Aims
The impact of a high-fat diet on the failing heart is unclear, and the differences between polyunsaturated fatty acids (PUFA) and saturated fat have not been assessed. Here, we compared a standard low-fat diet to high-fat diets enriched with either saturated fat (palmitate and stearate) or PUFA (linoleic and α-linolenic acids) in hamsters with genetic cardiomyopathy.
Methods and results
Male δ-sarcoglycan null Bio TO2 hamsters were fed a standard low-fat diet (12% energy from fat), or high-fat diets (45% fat) comprised of either saturated fat or PUFA. The median survival was increased by the high saturated fat diet (P< 0.01; 278 days with standard diet and 361 days with high saturated fat)), but not with high PUFA (260 days) (n = 30–35/group). Body mass was modestly elevated (∼10%) in both high fat groups. Subgroups evaluated after 24 weeks had similar left ventricular chamber size, function, and mass. Mitochondrial oxidative enzyme activity and the yield of interfibrillar mitochondria (IFM) were decreased to a similar extent in all TO2 groups compared with normal F1B hamsters. Ca2+-induced mitochondrial permeability transition pore opening was enhanced in IFM in all TO2 groups compared with F1B hamsters, but to a significantly greater extent in those fed the high PUFA diet compared with the standard or high saturated fat diet.
Conclusion
These results show that a high intake of saturated fat improves survival in heart failure compared with a high PUFA diet or low-fat diet, despite persistent mitochondrial defects.
doi:10.1093/cvr/cvr258
PMCID: PMC3243037  PMID: 21960686
Cardiomyopathy; Low-carbohydrate diet; Metabolism; Obesity
3.  Glucose-6-Phosphate Dehydrogenase and NADPH Redox Regulates Cardiac Myocyte L-Type Calcium Channel Activity and Myocardial Contractile Function 
PLoS ONE  2012;7(10):e45365.
We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca2+ currents (ICa-L) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD could be a novel signaling mechanism which inhibit ICa-L and, therefore, cardiac contractile function. We tested this idea by examining myocardial function in isolated hearts and Ca2+ channel activity in isolated cardiac myocytes. Myocardial function was tested in Langendorff perfused hearts and ICa-L were recorded in the whole-cell patch configuration by applying double pulses from a holding potential of −80 mV and then normalized to the peak amplitudes of control currents. 6-Aminonicotinamide, a competitive inhibitor of G6PD, increased pCO2 and decreased pH. Additionally, 6-aminonicotinamide inhibited G6PD activity, reduced NADPH levels, attenuated peak ICa-L amplitudes, and decreased left ventricular developed pressure and ±dp/dt. Finally, dialyzing NADPH into cells from the patch pipette solution attenuated the suppression of ICa-L by 6-aminonicotinamide. Likewise, in G6PD-deficient mice, G6PD insufficiency in the heart decreased GSH-to-GSSG ratio, superoxide, cholesterol and acetyl CoA. In these mice, M-mode echocardiographic findings showed increased diastolic volume and end-diastolic diameter without changes in the fraction shortening. Taken together, these findings suggest that inhibiting G6PD activity and reducing NADPH levels alters metabolism and leads to inhibition of L-type Ca2+ channel activity. Notably, this pathway may be involved in modulating myocardial contractility under physiological and pathophysiological conditions during which the pentose phosphate pathway-derived NADPH redox is modulated (e.g., ischemia-reperfusion and heart failure).
doi:10.1371/journal.pone.0045365
PMCID: PMC3465299  PMID: 23071515
4.  Dietary Supplementation with Docosahexaenoic Acid, but Not Eicosapentanoic Acid, Dramatically Alters Cardiac Mitochondrial Phospholipid Fatty Acid Composition and Prevents Permeability Transition 
Biochimica et biophysica acta  2010;1797(8):1555-1562.
Treatment with the ω-3 polyunsaturated fatty acids (PUFAs) docosahexanoic acid (DHA) and eicosapentanoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effects of DHA and EPA on mitochondria function. We compared the effects of dietary supplementation with the ω-3 PUFAs DHA and EPA on cardiac mitochondrial phospholipid fatty acid composition and Ca2+-induced MPTP opening. Rats were fed a standard lab diet with either normal low levels of ω-3 PUFA, or DHA or EPA at 2.5% of energy intake for 8 weeks, and cardiac mitochondria were isolated and analyzed for Ca2+-induced MPTP opening and phospholipid fatty acyl composition. DHA supplementation increased both DHA and EPA and decreased ARA in mitochondrial phospholipid, and significantly delayed MPTP opening as assessed by increased Ca2+ retention capacity and decreased Ca2+-induced mitochondria swelling. EPA supplementation increased EPA in mitochondrial phospholipids, but did not affect DHA, only modestly lowered ARA, and did not affect MPTP opening. In summary, dietary supplementation with DHA but not EPA, profoundly altered mitochondrial phospholipid fatty acid composition and delayed Ca2+-induced MPTP opening.
doi:10.1016/j.bbabio.2010.05.007
PMCID: PMC3071681  PMID: 20471951
cardiac; eicosapentaenoic acid; docosahexaenoic acid; fish oil; heart; mitochondrial permeability transition pore
5.  Dietary ω-3 Fatty Acids Alter Cardiac Mitochondrial Phospholipid Composition and Delay Ca2+-Induced Permeability Transition 
Consumption of ω-3 fatty acids from fish oil, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), decreases risk for heart failure and attenuates pathologic cardiac remodeling in response to pressure overload. Dietary supplementation with EPA+DHA may also impact cardiac mitochondrial function and energetics through alteration of membrane phospholipids. We assessed the role of EPA+DHA supplementation on left ventricular (LV) function, cardiac mitochondrial membrane phospholipid composition, respiration, and sensitivity to mitochondrial permeability transition pore (MPTP) opening in normal and infarcted myocardium. Rats were subjected to sham surgery or myocardial infarction by coronary artery ligation (n=10–14), and fed a standard diet, or supplemented with EPA+DHA (2.3% of energy intake) for 12 weeks. EPA+DHA altered fatty acid composition of total mitochondrial phospholipids and cardiolipin by reducing arachidonic acid content and increasing DHA incorporation. EPA+DHA significantly increased calcium uptake capacity in both subsarcolemmal and intrafibrillar mitochondria from sham rats. This treatment effect persisted with the addition of cyclosporin A, and was not accompanied by changes in mitochondrial respiration or coupling, or cyclophilin D protein expression. Myocardial infarction resulted in heart failure as evidenced by LV dilation and contractile dysfunction. Infarcted LV myocardium had decreased mitochondrial protein yield and activity of mitochondrial marker enzymes, however respiratory function of isolated mitochondria was normal. EPA+DHA had no effect on LV function, mitochondrial respiration, or MPTP opening in rats with heart failure. In conclusion, dietary supplementation with EPA+DHA altered mitochondrial membrane phospholipid fatty acid composition in normal and infarcted hearts, but delayed MPTP opening only in normal hearts.
doi:10.1016/j.yjmcc.2009.08.014
PMCID: PMC2783943  PMID: 19703463
eicosapentaenoic acid; docosahexaenoic acid; myocardial infarction; mitochondrial permeability transition pore
6.  ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin 
Background
Pathological left ventricular (LV) hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA) up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1) assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2) evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart.
Methods
Wild type (WT) and adiponectin-/- mice underwent transverse aortic constriction (TAC) and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated.
Results
TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA.
Conclusion
These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.
doi:10.1186/1476-511X-9-95
PMCID: PMC2939588  PMID: 20819225

Results 1-6 (6)