PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Domain-Specific and Temperature-Dependent Protein Misfolding Phenotype of Variant Medium-Chain acyl-CoA Dehydrogenase 
PLoS ONE  2014;9(4):e93852.
The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a molecular loss-of-function phenotype. Here we established a comprehensive experimental setup to analyze the structural consequences of eight ACADM missense mutations (p.Ala52Val, p.Tyr67His, p.Tyr158His, p.Arg206Cys, p.Asp266Gly, p.Lys329Glu, p.Arg334Lys, p.Arg413Ser) identified after newborn screening and linked the corresponding protein misfolding phenotype to the site of side-chain replacement with respect to the domain. With fever being the crucial risk factor for metabolic decompensation of patients with MCADD, special emphasis was put on the analysis of structural and functional derangements related to thermal stress. Based on protein conformation, thermal stability and kinetic stability, the molecular phenotype in MCADD depends on the structural region that is affected by missense-induced conformational changes with the central β-domain being particularly prone to structural derangement and destabilization. Since systematic classification of conformational derangements induced by ACADM mutations may be a helpful tool in assessing the clinical risk of patients, we scored the misfolding phenotype of the variants in comparison to p.Lys329Glu (K304E), the classical severe mutation, and p.Tyr67His (Y42H), discussed to be mild. Experiments assessing the impact of thermal stress revealed that mutations in the ACADM gene lower the temperature threshold at which MCAD loss-of-function occurs. Consequently, increased temperature as it occurs during intercurrent infections, significantly increases the risk of further conformational derangement and loss of function of the MCAD enzyme explaining the life-threatening clinical courses observed during fever episodes. Early and aggressive antipyretic treatment thus may be life-saving in patients suffering from MCADD.
doi:10.1371/journal.pone.0093852
PMCID: PMC3981736  PMID: 24718418
2.  Sinorhizobium meliloti CheA Complexed with CheS Exhibits Enhanced Binding to CheY1, Resulting in Accelerated CheY1 Dephosphorylation 
Journal of Bacteriology  2012;194(5):1075-1087.
Retrophosphorylation of the histidine kinase CheA in the chemosensory transduction chain is a widespread mechanism for efficient dephosphorylation of the activated response regulator. First discovered in Sinorhizobium meliloti, the main response regulator CheY2-P shuttles its phosphoryl group back to CheA, while a second response regulator, CheY1, serves as a sink for surplus phosphoryl groups from CheA-P. We have identified a new component in this phospho-relay system, a small 97-amino-acid protein named CheS. CheS has no counterpart in enteric bacteria but revealed distinct similarities to proteins of unknown function in other members of the α subgroup of proteobacteria. Deletion of cheS causes a phenotype similar to that of a cheY1 deletion strain. Fluorescence microscopy revealed that CheS is part of the polar chemosensory cluster and that its cellular localization is dependent on the presence of CheA. In vitro binding, as well as coexpression and copurification studies, gave evidence of CheA/CheS complex formation. Using limited proteolysis coupled with mass spectrometric analyses, we defined CheA163–256 to be the CheS binding domain, which overlaps with the N-terminal part of the CheY2 binding domain (CheA174–316). Phosphotransfer experiments using isolated CheA-P showed that dephosphorylation of CheY1-P but not CheY2-P is increased in the presence of CheS. As determined by surface plasmon resonance spectroscopy, CheY1 binds ∼100-fold more strongly to CheA/CheS than to CheA. We propose that CheS facilitates signal termination by enhancing the interaction of CheY1 and CheA, thereby promoting CheY1-P dephosphorylation, which results in a more efficient drainage of the phosphate sink.
doi:10.1128/JB.06505-11
PMCID: PMC3294773  PMID: 22194454
3.  The Hsp90 co-chaperone p23 of Toxoplasma gondii: Identification, functional analysis and dynamic interactome determination 
Toxoplasma gondii is among the most successful parasites, with nearly half of the human population chronically infected. Recently a link between the T. gondii Hsp90 chaperone machinery and parasite development was observed. Here, the T. gondii Hsp90 co-chaperones p23 and Hip were identified mining the Toxoplasma- database (www.toxodb.org). Their identity was confirmed by domain structure and blast analysis. Additionally, analysis of the secondary structure and studies on the chaperone function of the purified protein verified the p23 identity. Studies of co-immunoprecipitation (co-IP) identified two different types of complexes, one comprising at least Hip-Hsp70-Hsp90 and another containing at least p23-Hsp90. Indirect immunofluorescence assays showed that Hip is localized in the cytoplasm in tachyzoites and as well in bradyzoites. For p23 in contrast, a solely cytoplasmic localization was only observed in the tachyzoite stage whereas nuclear and cytosolic distribution and colocalization with Hsp90 was observed in bradyzoites. These results indicate that the T. gondii Hsp90-heterocomplex cycle is similar to the one proposed for higher eukaryotes, further highlighting the implication of the Hsp90/p23 in parasite development. Furthermore, co-IP experiments of tachyzoite/bradyzoite lysates with anti-p23 antiserum and identification of the complexed proteins together with the use of the curated interaction data available from different source (orthologs and Plasmodium databases) allowed us to construct an interaction network (interactome) covering the dynamics of the Hsp90 chaperone machinery.
doi:10.1016/j.molbiopara.2010.04.004
PMCID: PMC2990952  PMID: 20403389
Toxoplasma gondii; development; Hsp90 heterocomplex; p23; protein prediction interaction; bioinformatic
4.  Polymorphisms in the Hsp70 gene locus are genetically associated with systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2010;69(11):1983-1989.
Background
Heat shock proteins (Hsps) play a role in the delivery and presentation of antigenic peptides and are thought to be involved in the pathogenesis of multifactorial diseases.
Objective
To investigate genes encoding cytosolic Hsp70 proteins for associations of allelic variants with systemic lupus erythematosus (SLE).
Methods
Case–control studies of two independent Caucasian SLE cohorts were performed. In a haplotype-tagging single-nucleotide polymorphism approach, common variants of HspA1L, HspA1A and HspA1B were genotyped and principal component analyses were performed for the cohort from the Oklahoma Medical Research Foundation (OMRF). Relative quantification of mRNA was carried out for each Hsp70 gene in healthy controls. Conditional regression analysis was performed to determine if allelic variants in Hsp70 act independently of HLA-DR3.
Results
On analysis of common genetic variants of HspA1L, HspA1A and HspA1B, a haplotype significantly associated with SLE in the Erlangen-SLE cohort was identified, which was confirmed in the OMRF cohort. Depending on the cohorts, OR ranging from 1.43 to 1.88 and 2.64 to 3.16 was observed for individuals heterozygous and homozygous for the associated haplotype, respectively. Patients carrying the risk haplotype or the risk allele more often displayed autoantibodies to Ro and La in both cohorts. In healthy controls bearing this haplotype, the amount of HspA1A mRNA was significantly increased, whereas total Hsp70 protein concentration was not altered.
Conclusions
Allelic variants of the Hsp70 genes are significantly associated with SLE in Caucasians, independently of HLA-DR3, and correlate with the presence of autoantibodies to Ro and La. Hence, the Hsp70 gene locus appears to be involved in SLE pathogenesis.
doi:10.1136/ard.2009.122630
PMCID: PMC3002760  PMID: 20498198
5.  Identification, Cloning, and Characterization of a Novel Ketoreductase from the Cyanobacterium Synechococcus sp. Strain PCC 7942▿  
Applied and Environmental Microbiology  2008;74(21):6697-6702.
A new ketoreductase useful for asymmetric synthesis of chiral alcohols was identified in the cyanobacterium Synechococcus sp. strain PCC 7942. Mass spectrometry of trypsin-digested peptides identified the protein as 3-ketoacyl-[acyl-carrier-protein] reductase (KR) (EC 1.1.1.100). The gene, referred to as fabG, was cloned, functionally expressed in Escherichia coli, and subsequently purified to homogeneity. The enzyme displayed a temperature optimum at 44°C and a broad pH optimum between pH 7 and pH 9. The NADPH-dependent KR was able to asymmetrically reduce a variety of prochiral ketones with good to excellent enantioselectivities (>99.8%). The KR showed particular high specific activity for asymmetric reduction of ethyl 4-chloroacetoacetate (38.29 ± 2.15 U mg−1) and 2′,3′,4′,5′,6′-pentafluoroacetophenone (8.57 ± 0.49 U mg−1) to the corresponding (S)-alcohols. In comparison with an established industrial enzyme like the alcohol dehydrogenase from Lactobacillus brevis, the KR showed seven-times-higher activity toward 2′,3′,4′,5′,6′-pentafluoroacetophenone, with a remarkably higher enantiomeric excess (>99.8% [S] versus 43.3% [S]).
doi:10.1128/AEM.00925-08
PMCID: PMC2576678  PMID: 18791006
6.  MotD of Sinorhizobium meliloti and Related α-Proteobacteria Is the Flagellar-Hook-Length Regulator and Therefore Reassigned as FliK 
Journal of Bacteriology  2006;188(6):2144-2153.
The flagella of the soil bacterium Sinorhizobium meliloti differ from the enterobacterial paradigm in the complex filament structure and modulation of the flagellar rotary speed. The mode of motility control in S. meliloti has a molecular corollary in two novel periplasmic motility proteins, MotC and MotE, that are present in addition to the ubiquitous MotA/MotB energizing proton channel. A fifth motility gene is located in the mot operon downstream of the motB and motC genes. Its gene product was originally designated MotD, a cytoplasmic motility protein having an unknown function. We report here reassignment of MotD as FliK, the regulator of flagellar hook length. The FliK gene is one of the few flagellar genes not annotated in the contiguous flagellar regulon of S. meliloti. Characteristic for its class, the 475-residue FliK protein contains a conserved, compactly folded Flg hook domain in its carboxy-terminal region. Deletion of fliK leads to formation of prolonged flagellar hooks (polyhooks) with missing filament structures. Extragenic suppressor mutations all mapped in the cytoplasmic region of the transmembrane export protein FlhB and restored assembly of a flagellar filament, and thus motility, in the presence of polyhooks. The structural properties of FliK are consistent with its function as a substrate specificity switch of the flagellar export apparatus for switching from rod/hook-type substrates to filament-type substrates.
doi:10.1128/JB.188.6.2144-2153.2006
PMCID: PMC1428147  PMID: 16513744
7.  RNA stem–loop enhanced expression of previously non-expressible genes 
Nucleic Acids Research  2004;32(9):e78.
The key step in bacterial translation is formation of the pre-initiation complex. This requires initial contacts between mRNA, fMet-tRNA and the 30S subunit of the ribosome, steps that limit the initiation of translation. Here we report a method for improving translational initiation, which allows expression of several previously non-expressible genes. This method has potential applications in heterologous protein synthesis and high-throughput expression systems. We introduced a synthetic RNA stem–loop (stem length, 7 bp; ΔG0 = –9.9 kcal/mol) in front of various gene sequences. In each case, the stem–loop was inserted 15 nt downstream from the start codon. Insertion of the stem–loop allowed in vitro expression of five previously non-expressible genes and enhanced the expression of all other genes investigated. Analysis of the RNA structure proved that the stem–loop was formed in vitro, and demonstrated that stabilization of the ribosome binding site is due to stem–loop introduction. By theoretical RNA structure analysis we showed that the inserted RNA stem–loop suppresses long-range interactions between the translation initiation domain and gene-specific mRNA sequences. Thus the inserted RNA stem–loop supports the formation of a separate translational initiation domain, which is more accessible to ribosome binding.
doi:10.1093/nar/gnh076
PMCID: PMC419630  PMID: 15163763

Results 1-7 (7)