PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-23 (23)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria 
The Journal of Physiology  2013;591(Pt 17):4249-4272.
Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche–Ramirez–Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca2+ handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate initiation and maintenance of re-entrant excitation waves.
doi:10.1113/jphysiol.2013.254987
PMCID: PMC3779115  PMID: 23732649
2.  Modification by KCNE1 variants of the hERG potassium channel response to premature stimulation and to pharmacological inhibition 
Physiological Reports  2013;1(6):e00175.
human Ether-à-go-go-Related Gene (hERG) encodes the pore-forming subunit of cardiac rapid delayed rectifier K+ current (IKr) channels, which play important roles in ventricular repolarization, in protecting the myocardium from unwanted premature stimuli, and in drug-induced Long QT Syndrome (LQTS). KCNE1, a small transmembrane protein, can coassemble with hERG. However, it is not known how KCNE1 variants influence the channel's response to premature stimuli or if they influence the sensitivity of hERG to pharmacological inhibition. Accordingly, whole-cell patch-clamp measurements of hERG current (IhERG) were made at 37°C from hERG channels coexpressed with either wild-type (WT) KCNE1 or with one of three KCNE1 variants (A8V, D76N, and D85N). Under both conventional voltage clamp and ventricular action potential (AP) clamp, the amplitude of IhERG was smaller for A8V, D76N, and D85N KCNE1 + hERG than for WT KCNE1 + hERG. Using paired AP commands, with the second AP waveform applied at varying time intervals following the first to mimic premature ventricular excitation, the response of IhERG carried by each KCNE1 variant was reduced compared to that with WT KCNE1 + hERG. The IhERG blocking potency of the antiarrhythmic drug quinidine was similar between WT KCNE1 and the three KCNE1 variants. However, the IhERG inhibitory potency of the antibiotic clarithromycin and of the prokinetic drug cisapride was altered by KCNE1 variants. These results demonstrate that naturally occurring KCNE1 variants can reduce the response of hERG channels to premature excitation and also alter the sensitivity of hERG channels to inhibition by some drugs linked to acquired LQTS.
doi:10.1002/phy2.175
PMCID: PMC3871485  PMID: 24400172
Cardiac; cisapride; clarithromycin; hERG; KCNE1; Long QT; potassium channels; QT interval; quinidine
3.  Heterogeneous and anisotropic integrative model of pulmonary veins: computational study of arrhythmogenic substrate for atrial fibrillation 
Interface Focus  2013;3(2):20120069.
Mechanisms underlying the genesis of re-entrant substrate for the most common cardiac arrhythmia, atrial fibrillation (AF), are not well understood. In this study, we develop a multi-scale three-dimensional computational model that integrates cellular electrophysiology of the left atrium (LA) and pulmonary veins (PVs) with the respective tissue geometry and fibre orientation. The latter is reconstructed in unique detail from high-resolution (approx. 70 μm) contrast micro-computed tomography data. The model is used to explore the mechanisms of re-entry initiation and sustenance in the PV region, regarded as the primary source of high-frequency electrical activity in AF. Simulations of the three-dimensional model demonstrate that an initial break-down of normal electrical excitation wave-fronts can be caused by the electrical heterogeneity between the PVs and LA. High tissue anisotropy is then responsible for the slow conduction and generation of a re-entrant circuit near the PVs. Evidence of such circuits has been seen clinically in AF patients. Our computational study suggests that primarily the combination of electrical heterogeneity and conduction anisotropy between the PVs and LA tissues leads to the generation of a high-frequency (approx. 10 Hz) re-entrant source near the PV sleeves, thus providing new insights into the arrhythmogenic mechanisms of excitation waves underlying AF.
doi:10.1098/rsfs.2012.0069
PMCID: PMC3638474  PMID: 24427522
integrative modelling; cardiac arrhythmias; re-entrant waves
4.  Topical Antiangiogenic SRPK1 Inhibitors Reduce Choroidal Neovascularization in Rodent Models of Exudative AMD 
Purpose.
Exudative AMD (wet AMD) is treated by monthly injection into the eye of anti-VEGF proteins. VEGF is alternatively spliced to produce numerous isoforms that differ in angiogenic activity. Serine-rich protein kinase-1 (SRPK1) has been identified as a regulator of pro-angiogenic VEGF splicing by phosphorylating serine-rich splicing factor-1 (SRSF1), which binds to VEGF pre-mRNA. We tested the hypothesis that topical (eye drop) SRPK1-selective inhibitors could be generated that reduce pro-angiogenic isoforms, and prevent choroidal neovascularization in vivo.
Methods.
Novel inhibitors were tested for SRPK inhibition in vitro, pro-angiogenic VEGF production in RPE cells by PCR and ELISA, and for inhibition of choroidal neovascularisation in mice and rats.
Results.
A novel disubstituted furan inhibitor was selective for the SRPK family of kinases and reduced expression of pro-angiogenic but not antiangiogenic VEGF isoforms. This inhibitor and previously identified SRPK inhibitors significantly reduced choroidal neovascularisation in vivo. Topical administration of SRPK inhibitors dose-dependently blocked CNV with an EC50 of 9 μM.
Conclusions.
These results indicate that novel SRPK1 selective inhibitors could be a potentially novel topical (eye drop) therapeutic for wet AMD.
Exudative AMD results from excess angiogenic VEGF production. Switching VEGF splicing to the antiangiogenic isoforms by inhibiting serine-rich protein kinase-1 (SRPK1) can be achieved by topical application of novel SRPK1 inhibitors. This could result in novel treatments that do not require injection in wet AMD.
doi:10.1167/iovs.13-12422
PMCID: PMC3771558  PMID: 23887803
VEGF; splicing; AMD
5.  Evolution and pharmacological modulation of the arrhythmogenic wave dynamics in canine pulmonary vein model 
Europace  2014;16(3):416-423.
Aims
Atrial fibrillation (AF), the commonest cardiac arrhythmia, has been strongly linked with arrhythmogenic sources near the pulmonary veins (PVs), but underlying mechanisms are not fully understood. We aim to study the generation and sustenance of wave sources in a model of the PV tissue.
Methods and results
A previously developed biophysically detailed three-dimensional canine atrial model is applied. Effects of AF-induced electrical remodelling are introduced based on published experimental data, as changes of ion channel currents (ICaL, IK1, Ito, and IKur), the action potential (AP) and cell-to-cell coupling levels. Pharmacological effects are introduced by blocking specific ion channel currents. A combination of electrical heterogeneity (AP tissue gradients of 5–12 ms) and anisotropy (conduction velocities of 0.75–1.25 and 0.21–0.31 m/s along and transverse to atrial fibres) can results in the generation of wave breaks in the PV region. However, a long wavelength (171 mm) prevents the wave breaks from developing into re-entry. Electrical remodelling leads to decreases in the AP duration, conduction velocity and wavelength (to 49 mm), such that re-entry becomes sustained. Pharmacological effects on the tissue heterogeneity and vulnerability (to wave breaks and re-entry) are quantified to show that drugs that increase the wavelength and stop re-entry (IK1 and IKur blockers) can also increase the heterogeneity (AP gradients of 26–27 ms) and the likelihood of wave breaks.
Conclusion
Biophysical modelling reveals large conduction block areas near the PVs, which are due to discontinuous fibre arrangement enhanced by electrical heterogeneity. Vulnerability to re-entry in such areas can be modulated by pharmacological interventions.
doi:10.1093/europace/eut349
PMCID: PMC3934846  PMID: 24569896
Atrial arrhythmias; Pulmonary veins; Computational modelling; Re-entrant waves; Drug effects
6.  In silico investigation of the short QT syndrome, using human ventricle models incorporating electromechanical coupling 
Introduction: Genetic forms of the Short QT Syndrome (SQTS) arise due to cardiac ion channel mutations leading to accelerated ventricular repolarization, arrhythmias and sudden cardiac death. Results from experimental and simulation studies suggest that changes to refractoriness and tissue vulnerability produce a substrate favorable to re-entry. Potential electromechanical consequences of the SQTS are less well-understood. The aim of this study was to utilize electromechanically coupled human ventricle models to explore electromechanical consequences of the SQTS.
Methods and Results: The Rice et al. mechanical model was coupled to the ten Tusscher et al. ventricular cell model. Previously validated K+ channel formulations for SQT variants 1 and 3 were incorporated. Functional effects of the SQTS mutations on [Ca2+]i transients, sarcomere length shortening and contractile force at the single cell level were evaluated with and without the consideration of stretch-activated channel current (Isac). Without Isac, at a stimulation frequency of 1Hz, the SQTS mutations produced dramatic reductions in the amplitude of [Ca2+]i transients, sarcomere length shortening and contractile force. When Isac was incorporated, there was a considerable attenuation of the effects of SQTS-associated action potential shortening on Ca2+ transients, sarcomere shortening and contractile force. Single cell models were then incorporated into 3D human ventricular tissue models. The timing of maximum deformation was delayed in the SQTS setting compared to control.
Conclusion: The incorporation of Isac appears to be an important consideration in modeling functional effects of SQT 1 and 3 mutations on cardiac electro-mechanical coupling. Whilst there is little evidence of profoundly impaired cardiac contractile function in SQTS patients, our 3D simulations correlate qualitatively with reported evidence for dissociation between ventricular repolarization and the end of mechanical systole.
doi:10.3389/fphys.2013.00166
PMCID: PMC3701879  PMID: 23847545
short QT syndrome; stretch-activated channel; mechanical contraction; 3D model; human ventricles
7.  Nickel inhibits β-1 adrenoceptor mediated activation of cardiac CFTR chloride channels 
Highlights
► We report the block of the β-adrenoceptor-activated cardiac CFTR Cl− current by Ni2+. ► Extracellular Ni2+ inhibits the current activated by β1-adrenoceptors in a concentration-dependent manner. ► The action of Ni2+ is insensitive to β2-blockade. ► Ni2+ does not affect the β-adrenoceptor-activated current from the intracellular side. ► The data are consistent with an action of Ni2+ at the β1-adrenoceptor from the external side.
Cardiac ventricular myocytes exhibit a protein kinase A-dependent Cl− current (ICl.PKA) mediated by the cystic fibrosis transmembrane conductance regulator (CFTR). There is conflicting evidence regarding the ability of the divalent cation nickel (Ni2+), which has been used widely in vitro in the study of other cardiac ionic conductances, to inhibit ICl.PKA. Here the action of Ni2+ on ICl.PKA activated by β-adrenergic stimulation has been elucidated. Whole-cell patch-clamp recordings were made from rabbit isolated ventricular myocytes. Externally applied Ni2+ blocked ICl.PKA activated by 1 μM isoprenaline with a log IC50 (M) of −4.107 ± 0.075 (IC50 = 78.1 μM) at +100 mV and −4.322 ± 0.107 (IC50 = 47.6 μM) at −100 mV. Thus, the block of ICl.PKA by Ni2+ was not strongly voltage dependent. Ni2+ applied internally via the patch-pipette was ineffective at inhibiting isoprenaline-activated ICl,PKA, but in the same experiments the current was suppressed by external Ni2+ application, indicative of an external site of Ni2+ action. In the presence of 1 μM atenolol isoprenaline was ineffective at activating ICl.PKA, but in the presence of the β2-adrenoceptor inhibitor ICI 118,551 isoprenaline still activated Ni2+-sensitive ICl.PKA. Collectively, these data demonstrate that Ni2+ ions produce marked inhibition of β1-adrenoceptor activated ventricular ICl.PKA at submillimolar [Ni2+]: an action that is likely to involve an interaction between Ni2+ and β1-adrenoceptors. The concentration-dependence for ICl.PKA inhibition seen here indicates the potential for confounding effects on ICl,PKA to occur even at comparatively low Ni2+ concentrations, when Ni2+ is used to study other cardiac ionic currents under conditions of β-adrenergic agonism.
doi:10.1016/j.bbrc.2013.01.087
PMCID: PMC3686155  PMID: 23376720
Rabbit cardiomyocytes; PKA-dependent Cl− current; CFTR; CFTR-inhibitor; Nickel; Ni2+
8.  The sodium channel Nav1.5a is the predominant isoform expressed in adult mouse dorsal root ganglia and exhibits distinct inactivation properties from the full-length Nav1.5 channel 
Nav1.5 is the principal voltage-gated sodium channel expressed in heart, and is also expressed at lower abundance in embryonic dorsal root ganglia (DRG) with little or no expression reported postnatally. We report here the expression of Nav1.5 mRNA isoforms in adult mouse and rat DRG. The major isoform of mouse DRG is Nav1.5a, which encodes a protein with an IDII/III cytoplasmic loop reduced by 53 amino acids. Western blot analysis of adult mouse DRG membrane proteins confirmed the expression of Nav1.5 protein. The Na+ current produced by the Nav1.5a isoform has a voltage-dependent inactivation significantly shifted to more negative potentials (by ~5 mV) compared to the full-length Nav1.5 when expressed in the DRG neuroblastoma cell line ND7/23. These results imply that the alternatively spliced exon 18 of Nav1.5 plays a role in channel inactivation and that Nav1.5a is likely to make a significant contribution to adult DRG neuronal function.
doi:10.1016/j.mcn.2007.03.002
PMCID: PMC2726334  PMID: 17433712
9.  Action Potential Clamp and Pharmacology of the Variant 1 Short QT Syndrome T618I hERG K+ Channel 
PLoS ONE  2012;7(12):e52451.
Background
The familial Short QT Syndrome (SQTS) is associated with an increased risk of cardiac arrhythmia and sudden death. Gain-of-function mutations in the hERG K+ channel protein have been linked to variant 1 of the SQTS. A hERG channel pore (T618I) mutation has recently been identified in families with heritable SQTS. This study aimed to determine effects of the T618I-hERG mutation on (i) hERG current (IhERG) elicited by ventricular action potentials; (ii) the sensitivity of IhERG to inhibition by four clinically used antiarrhythmic drugs.
Methods
Electrophysiological recordings of IhERG were made at 37°C from HEK 293 cells expressing wild-type (WT) or T618I hERG. Whole-cell patch clamp recording was performed using both conventional voltage clamp and ventricular action potential (AP) clamp methods.
Results
Under conventional voltage-clamp, WT IhERG peaked at 0-+10 mV, whilst for T618I IhERG maximal current was right-ward shifted to ∼ +40 mV. Voltage-dependent activation and inactivation of T618I IhERG were positively shifted (respectively by +15 and ∼ +25 mV) compared to WT IhERG. The IhERG ‘window’ was increased for T618I compared to WT hERG. Under ventricular AP clamp, maximal repolarising WT IhERG occurred at ∼ -30 mV, whilst for T618I hERG peak IhERG occurred earlier during AP repolarisation, at ∼ +5 mV. Under conventional voltage clamp, half-maximal inhibitory concentrations (IC50) for inhibition of IhERG tails by quinidine, disopyramide, D-sotalol and flecainide for T618I hERG ranged between 1.4 and 3.2 fold that for WT hERG. Under action potential voltage clamp, T618I IC50s ranged from 1.2 to 2.0 fold the corresponding IC50 values for WT hERG.
Conclusions
The T618I mutation produces a more modest effect on repolarising IhERG than reported previously for the N588K-hERG variant 1 SQTS mutation. All drugs studied here appear substantially to retain their ability to inhibit IhERG in the setting of the SQTS-linked T618I mutation.
doi:10.1371/journal.pone.0052451
PMCID: PMC3530446  PMID: 23300672
10.  Modeling the Chronotropic Effect of Isoprenaline on Rabbit Sinoatrial Node 
Introduction: β-adrenergic stimulation increases the heart rate by accelerating the electrical activity of the pacemaker of the heart, the sinoatrial node (SAN). Ionic mechanisms underlying the actions of β-adrenergic stimulation are not yet fully understood. Isoprenaline (ISO), a β-adrenoceptor agonist, shifts voltage-dependent If activation to more positive potentials resulting in an increase of If, which has been suggested to be the main mechanism underlying the effect of β-adrenergic stimulation. However, ISO has been found to increase the firing rate of rabbit SAN cells when If is blocked. ISO also increases ICaL, Ist, IKr, and IKs; and shifts the activation of IKr to more negative potentials and increases the rate of its deactivation. ISO has also been reported to increase the intracellular Ca2+ transient, which can contribute to chronotropy by modulating the “Ca2+ clock.” The aim of this study was to analyze the ionic mechanisms underlying the positive chronotropy of β-adrenergic stimulation using two distinct and well established computational models of the electrical activity of rabbit SAN cells. Methods and results: We modified the Boyett et al. (2001) and Kurata et al. (2008) models of electrical activity for the central and peripheral rabbit SAN cells by incorporating equations for the known dose-dependent actions of ISO on various ionic channel currents (ICaL, Ist, IKr, and IKs), kinetics of IKr and If, and the intracellular Ca2+ transient. These equations were constructed from experimental data. To investigate the ionic basis of the effects of ISO, we simulated the chronotropic effect of a range of ISO concentrations when ISO exerted all its actions or just a subset of them. Conclusion: In both the Boyett et al. and Kurata et al. SAN models, the chronotropic effect of ISO was found to result from an integrated action of ISO on ICaL, If, Ist, IKr, and IKs, among which an increase in the rate of deactivation of IKr plays a prominent role, though the effect of ISO on If and [Ca2+]i also plays a role.
doi:10.3389/fphys.2012.00241
PMCID: PMC3459472  PMID: 23060799
sinoatrial node; isoprenaline; action potential
11.  Acute desensitization of acetylcholine and endothelin-1 activated inward rectifier K+ current in myocytes from the cardiac atrioventricular node 
Highlights
► ACh and ET-1 activate a K+ current in cardiac atrioventricular nodal cells. ► Tertiapin-Q sensitive IKACh activated via M2 receptors shows bi-exponential ‘fade’. ► ET-1 activates a similar current that also fades. ► The fade reflects desensitization rather than altered K+ ion driving force. ► Acetylcholine is able to cross-desensitize the AVN cell response to endothelin-1.
The atrioventricular node (AVN) is a vital component of the pacemaker-conduction system of the heart, co-ordinating conduction of electrical excitation from cardiac atria to ventricles and acting as a secondary pacemaker. The electrical behaviour of the AVN is modulated by vagal activity via activation of muscarinic potassium current, IKACh. However, it is not yet known if this response exhibits ‘fade’ or desensitization in the AVN, as established for the heart’s primary pacemaker – the sinoatrial node. In this study, acute activation of IKACh in rabbit single AVN cells was investigated using whole-cell patch clamp at 37 °C. 0.1–1 μM acetylcholine (ACh) rapidly activated a robust IKACh in AVN myocytes during a descending voltage-ramp protocol. This response was inhibited by tertiapin-Q (TQ; 300 nM) and by the M2 muscarinic ACh receptor antagonist AFDX-116 (1 μM). During sustained ACh exposure the elicited IKACh exhibited bi-exponential fade (τf of 2.0 s and τs 76.9 s at −120 mV; 1 μM ACh). 10 nM ET-1 elicited a current similar to IKACh, which faded with a mono-exponential time-course (τ of 52.6 s at −120 mV). When ET-1 was applied following ACh, the ET-1 activated response was greatly attenuated, demonstrating that ACh could desensitize the response to ET-1. For neither ACh nor ET-1 was the rate of current fade dependent upon the initial response magnitude, which is inconsistent with K+ flux mediated changes in electrochemical driving force as the underlying mechanism. Collectively, these findings demonstrate that TQ sensitive inwardly rectifying K+ current in cardiac AVN cells, elicited by M2 muscarinic receptor or ET-1 receptor activation, exhibits fade due to rapid desensitization.
doi:10.1016/j.bbrc.2012.05.148
PMCID: PMC3400056  PMID: 22683635
Acetylcholine (ACh); Atrioventricular node; AV node; AVN; Endothelin-1 (ET-1); GIRK; IKACh; Inward rectifier; Muscarinic potassium current; Tertiapin-Q
12.  Modulation by Endothelin-1 of Spontaneous Activity and Membrane Currents of Atrioventricular Node Myocytes from the Rabbit Heart 
PLoS ONE  2012;7(3):e33448.
Background
The atrioventricular node (AVN) is a key component of the cardiac pacemaker-conduction system. Although it is known that receptors for the peptide hormone endothelin-1 (ET-1) are expressed in the AVN, there is very little information available on the modulatory effects of ET-1 on AVN electrophysiology. This study characterises for the first time acute modulatory effects of ET-1 on AVN cellular electrophysiology.
Methods
Electrophysiological experiments were conducted in which recordings were made from rabbit isolated AVN cells at 35–37°C using the whole-cell patch clamp recording technique.
Results
Application of ET-1 (10 nM) to spontaneously active AVN cells led rapidly (within ∼13 s) to membrane potential hyperpolarisation and cessation of spontaneous action potentials (APs). This effect was prevented by pre-application of the ETA receptor inhibitor BQ-123 (1 µM) and was not mimicked by the ETB receptor agonist IRL-1620 (300 nM). In whole-cell voltage-clamp experiments, ET-1 partially inhibited L-type calcium current (ICa,L) and rapid delayed rectifier K+ current (IKr), whilst it transiently activated the hyperpolarisation-activated current (If) at voltages negative to the pacemaking range, and activated an inwardly rectifying current that was inhibited by both tertiapin-Q (300 nM) and Ba2+ ions (2 mM); each of these effects was sensitive to ETA receptor inhibition. In cells exposed to tertiapin-Q, ET-1 application did not produce membrane potential hyperpolarisation or immediate cessation of spontaneous activity; instead, there was a progressive decline in AP amplitude and depolarisation of maximum diastolic potential.
Conclusions
Acutely applied ET-1 exerts a direct modulatory effect on AVN cell electrophysiology. The dominant effect of ET-1 in this study was activation of a tertiapin-Q sensitive inwardly rectifying K+ current via ETA receptors, which led rapidly to cell quiescence.
doi:10.1371/journal.pone.0033448
PMCID: PMC3315568  PMID: 22479400
13.  The hERG K+ channel S4 domain L532P mutation: Characterization at 37 °C 
Biochimica et Biophysica Acta  2011;1808(10):2477-2487.
hERG (human Ether-à-go-go Related Gene) is responsible for ion channels mediating rapid delayed rectifier potassium current, IKr, which is key to cardiac action potential repolarization. Gain-of-function hERG mutations give rise to the SQT1 variant of the Short QT Syndrome (SQTS). Reggae mutant zebrafish, with a S4 zERG mutation (Leucine499Proline; L499P), display arrhythmic features analogous to those seen in the SQTS. The affected S4 domain ERG residue is highly conserved. This study was executed to determine how the homologous hERG mutation (L532P) influences channel function at 37 °C. Whole-cell measurements of current (IhERG) were made from HEK 293 cells expressing WT or L532P hERG. The half maximal activation voltage (V0.5) of L532P IhERG was positively shifted by ~+36 mV compared to WT IhERG; however at negative voltages a pronounced L532P IhERG was observed. Both activation and deactivation time-courses were accelerated for L532P IhERG. The inactivation V0.5 for L532P IhERG was shifted by ~+32 mV. Under action potential (AP) voltage-clamp, L532P IhERG exhibited a dome-shaped current peaking at ~+16 mV, compared to ~−31 mV for WT-IhERG. The L532P mutation produced an ~ 5-fold increase in the IC50 for dronedarone inhibition of IhERG. Homology modeling indicated that the L532 residue within the S4 helix lies closely apposed to the S5 region of an adjacent hERG subunit. Alterations to the S4 domain structure and, potentially, to interactions between adjacent hERG subunits are likely to account for the functional effects of this mutation.
Highlights
► The L532P hERG channel mutation was studied at 37 °C. ► The L532P mutation significantly modified activation and inactivation kinetics. ► hERG current elicited by AP voltage clamp was also significantly altered. ► The mutation also decreased channel sensitivity to inhibition by dronedarone. ► Homology modeling provides a structural context for the effects of this mutation.
doi:10.1016/j.bbamem.2011.07.001
PMCID: PMC3245891  PMID: 21777565
Arrhythmia; Dronedarone; hERG; IKr; Short QT syndrome; Potassium channel
14.  Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome 
Circulation research  2010;107(1):126-137.
RATIONALE
Familial sick sinus syndrome (SSS) has been linked to loss-of-function mutations of the SCN5A gene, which result in decreased inward Na+ current, INa. However, the functional role of INa in cardiac pacemaking is controversial, and mechanistic links between the mutations and sinus node dysfunction (SND) in SSS are unclear.
OBJECTIVE
To determine mechanisms by which the SCN5A mutations impair cardiac pacemaking.
METHODS
Action potential (AP) models for rabbit sinoatrial node (SAN) cells were modified to incorporate experimentally reported INa changes induced by two groups of SCN5A gene mutations (affecting the activation and inactivation of INa, respectively). The cell models were incorporated into an anatomically detailed 2D model of the intact SAN-atrium. Effects of the mutations and vagal nerve activity on cardiac pacemaking at the single cell and tissue levels were studied. Multi-electrode extracellular potential recordings of activation pattern from intact SAN-atrium preparations were performed to test predictions of the models.
RESULTS
At the single cell level, the mutations slowed down pacemaking rates in peripheral, but not in central SAN cells that control the heart rhythm. However, in tissue simulations, the mutations not only slowed down pacemaking, but also compromised AP conduction across the SAN-atrium, leading to a possible SAN exit block or sinus arrest, the major features of SSS. Simulated vagal nerve activity amplified the bradycardiac effects of the mutations. Two groups of SCN5A mutations showed subtle differences in impairing the ability of the SAN to drive the surrounding atrium – primarily, due to their differential effects on atrial excitability and conduction safety. Experimental data with tetrodotoxin and carbachol confirmed the simulation outcomes.
CONCLUSIONS
Our study substantiates the causative link between SCN5A gene mutations and SSS, and illustrates mechanisms by which the mutations impair the driving ability of the SAN.
doi:10.1161/CIRCRESAHA.110.219949
PMCID: PMC2901593  PMID: 20448214
Sick sinus syndrome; SCN5A mutation; ion channels; computer modelling
15.  β-Adrenoceptor/PKA-stimulation, Na+–Ca2+ exchange and PKA-activated Cl− currents in rabbit cardiomyocytes: A conundrum 
Cell Calcium  2011;49(4):233-239.
Investigations into the functional modulation of the cardiac Na+–Ca2+ exchanger (NCX) by acute β-adrenoceptor/PKA stimulation have produced conflicting results. Here, we investigated (i) whether or not β-adrenoceptor activation/PKA stimulation activates current in rabbit cardiac myocytes under NCX-‘selective’ conditions and (ii) if so, whether a PKA-activated Cl−-current may contribute to the apparent modulation of NCX current (INCX). Whole-cell voltage-clamp experiments were conducted at 37 °C on rabbit ventricular and atrial myocytes. The β-adrenoceptor-activated currents both in NCX-‘selective’ and Cl−-selective recording conditions were found to be sensitive to 10 mM Ni2+. In contrast, the PKA-activated Cl− current was not sensitive to Ni2+, when it was activated downstream to the β-adrenoceptors using 10 μM forskolin (an adenylyl cyclase activator). When 10 μM forskolin was applied under NCX-selective recording conditions, the Ni2+-sensitive current did not differ between control and forskolin. These findings suggest that in rabbit myocytes: (a) a PKA-activated Cl− current contributes to the Ni2+-sensitive current activated via β-adrenoceptor stimulation under recording conditions previously considered selective for INCX; (b) downstream activation of PKA does not augment Ni2+-sensitive INCX, when this is measured under conditions where the Ni2+-sensitive PKA-activated Cl− current is not present.
doi:10.1016/j.ceca.2011.02.006
PMCID: PMC3092849  PMID: 21439639
Cardiac myocyte; CFTR; NCX; Rabbit atrial myocyte; Rabbit ventricular myocyte; Whole-cell patch-clamp recording
16.  Inhibition of spontaneous activity of rabbit atrioventricular node cells by KB-R7943 and inhibitors of sarcoplasmic reticulum Ca2+ ATPase 
Cell Calcium  2011;49(1-7):56-65.
The atrioventricular node (AVN) can act as a subsidiary cardiac pacemaker if the sinoatrial node fails. In this study, we investigated the effects of the Na–Ca exchange (NCX) inhibitor KB-R7943, and inhibition of the sarcoplasmic reticulum calcium ATPase (SERCA), using thapsigargin or cyclopiazonic acid (CPA), on spontaneous action potentials (APs) and [Ca2+]i transients from cells isolated from the rabbit AVN. Spontaneous [Ca2+]i transients were monitored from undialysed AVN cells at 37 °C using Fluo-4. In separate experiments, spontaneous APs and ionic currents were recorded using the whole-cell patch clamp technique. Rapid application of 5 μM KB-R7943 slowed or stopped spontaneous APs and [Ca2+]i transients. However, in voltage clamp experiments in addition to blocking NCX current (INCX) KB-R7943 partially inhibited L-type calcium current (ICa,L). Rapid reduction of external [Na+] also abolished spontaneous activity. Inhibition of SERCA (using 2.5 μM thapsigargin or 30 μM CPA) also slowed or stopped spontaneous APs and [Ca2+]i transients. Our findings are consistent with the hypothesis that sarcoplasmic reticulum (SR) Ca2+ release influences spontaneous activity in AVN cells, and that this occurs via [Ca2+]i-activated INCX; however, the inhibitory action of KB-R7943 on ICa,L means that care is required in the interpretation of data obtained using this compound.
doi:10.1016/j.ceca.2010.11.008
PMCID: PMC3048929  PMID: 21163524
Atrioventricular node (AVN); Calcium; KB-R7943; Sarcoplasmic reticulum (SR); Spontaneous activity; Sodium–calcium exchange (NCX); Thapsigargin
17.  Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome 
Recently identified genetic forms of short QT syndrome (SQTS) are associated with an increased risk of arrhythmia and sudden death. The SQT3 variant is associated with an amino-acid substitution (D172N) in the KCNJ2-encoded Kir2.1 K+ channel. In this study, whole-cell action potential (AP) clamp recording from transiently transfected Chinese Hamster Ovary cells at 37 °C showed marked augmentation of outward Kir2.1 current through D172N channels, associated with right-ward voltage-shifts of peak repolarizing current during both ventricular and atrial AP commands. Peak outward current elicited by ventricular AP commands was inhibited by chloroquine with an IC50 of 2.45 μM for wild-type (WT) Kir2.1, of 3.30 μM for D172N-Kir2.1 alone and of 3.11 μM for co-expressed WT and D172N (P > 0.05 for all). These findings establish chloroquine as an effective inhibitor of SQT3 mutant Kir2.1 channels.
doi:10.1016/j.yjmcc.2009.02.027
PMCID: PMC2765655  PMID: 19285083
Arrhythmia; Antiarrhythmic; Chloroquine; KCNJ2; Kir2.1; QT interval; Short QT syndrome; Sudden death
18.  Computer Three-Dimensional Reconstruction of the Atrioventricular Node 
Circulation research  2008;102(8):975-985.
Because of its complexity, the atrioventricular node (AVN), remains 1 of the least understood regions of the heart. The aim of the study was to construct a detailed anatomic model of the AVN and relate it to AVN function. The electric activity of a rabbit AVN preparation was imaged using voltage-dependent dye. The preparation was then fixed and sectioned. Sixty-five sections at 60- to 340-μm intervals were stained for histology and immunolabeled for neurofilament (marker of nodal tissue) and connexin43 (gap junction protein). This revealed multiple structures within and around the AVN, including transitional tissue, inferior nodal extension, penetrating bundle, His bundle, atrial and ventricular muscle, central fibrous body, tendon of Todaro, and valves. A 3D anatomically detailed mathematical model (≈13 million element array) of the AVN and surrounding atrium and ventricle, incorporating all cell types, was constructed. Comparison of the model with electric activity recorded in experiments suggests that the inferior nodal extension forms the slow pathway, whereas the transitional tissue forms the fast pathway into the AVN. In addition, it suggests the pacemaker activity of the atrioventricular junction originates in the inferior nodal extension. Computer simulation of the propagation of the action potential through the anatomic model shows how, because of the complex structure of the AVN, reentry (slow-fast and fast-slow) can occur. In summary, a mathematical model of the anatomy of the AVN has been generated that allows AVN conduction to be explored.
doi:10.1161/CIRCRESAHA.108.172403
PMCID: PMC2650269  PMID: 18309098
atrioventricular node; slow pathway; fast pathway; reentry; modeling
19.  VEGF-Mediated Elevated Intracellular Calcium and Angiogenesis in Human Microvascular Endothelial Cells In Vitro Are Inhibited by Dominant Negative TRPC6 
Objective
Vascular endothelial growth factor (VEGF)-induced vascular permeability has been shown to be dependent on calcium influx, possibly through a transient receptor potential cation channel (TRPC)-mediated cation channel with properties of the TRPC3/6/7 subfamily. To investigate further the involvement of this subfamily, we determined the effects of dominant negative TRPC6 overexpression on VEGF-mediated changes of human microvascular endothelial cell (HMVEC) calcium, proliferation, migration, and sprouting.
Methods
Cytoplasmic calcium concentration was estimated by fura-2 fluorescence spectrophotometry, migration by Boyden chamber assay, sprouting by immunofluorescence imaging of stimulated endothelial cells, and proliferation by flow cytometry.
Results
Overexpression of a dominant negative TRPC6 construct in HMVECs inhibited the VEGF-mediated increases in cytosolic calcium, migration, sprouting, and proliferation. In contrast, overexpression of a wild-type TRPC6 construct increased the proliferation and migration of HMVECs.
Conclusions
TRPC6 is an obligatory component of cation channels required for the VEGF-mediated increase in cytosolic calcium and subsequent downstream signaling that leads to processes associated with angiogenesis.
doi:10.1080/10739680802220323
PMCID: PMC2635545  PMID: 18800249
VEGF; TRPC6; calcium; angiogenesis
20.  Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria 
The Journal of Physiology  2013;591(17):4249-4272.
Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche–Ramirez–Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca2+ handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate initiation and maintenance of re-entrant excitation waves.
doi:10.1113/jphysiol.2013.254987
PMCID: PMC3779115  PMID: 23732649
21.  Assessing hERG Pore Models As Templates for Drug Docking Using Published Experimental Constraints: The Inactivated State in the Context of Drug Block 
Many structurally and therapeutically diverse drugs interact with the human heart K+ channel hERG by binding within the K+ permeation pathway of the open channel, leading to drug-induced ‘long QT syndrome’. Drug binding to hERG is often stabilized by inactivation gating. In the absence of a crystal structure, hERG pore homology models have been used to characterize drug interactions. Here we assess potentially inactivated states of the bacterial K+ channel, KcsA, as templates for inactivated state hERG pore models in the context of drug binding using computational docking. Although Flexidock and GOLD docking produced low energy score poses in the models tested, each method selected a MthK K+ channel-based model over models based on the putative inactivated state KcsA structures for each of the 9 drugs tested. The variety of docking poses found indicates that an optimal arrangement for drug binding of aromatic side chains in the hERG pore can be achieved in several different configurations. This plasticity of the drug “binding site” is likely to be a feature of the hERG inactivated state. The results demonstrate that experimental data on specific drug interactions can be used as structural constraints to assess and refine hERG homology models.
doi:10.1021/ci400707h
PMCID: PMC3977586  PMID: 24471705
22.  Methadone, QTc interval prolongation and torsade de pointes: Case reports offer the best understanding of this problem 
We reviewed the literature and found 31 adult cases and 1 newborn case of methadone-associated QTc interval prolongation and/or torsade de pointes (TdP). Parametric statistics may not be useful in studying this issue because methadone-associated TdP is a very rare event and, hence, “an extreme outlier” consistent with scalable randomness. We may have to rely upon narrative medicine in the form of case reports with all its limitations and hazards to provide our best understanding. We report risk factors for methadone-associated QTc interval prolongation and TdP based on review of published case reports. We believe both drug manufacturers and the FDA would better serve our patients and inform clinicians if they more readily reported drug-induced outliers such as methadone-associated TdP using a case report format.
doi:10.1177/2045125312469982
PMCID: PMC3805428  PMID: 24167694
Drug-induced QTc interval prolongation; methadone; risk factors; torsade de pointes
23.  Increased Vulnerability of Human Ventricle to Re-entrant Excitation in hERG-linked Variant 1 Short QT Syndrome 
PLoS Computational Biology  2011;7(12):e1002313.
The short QT syndrome (SQTS) is a genetically heterogeneous condition characterized by abbreviated QT intervals and an increased susceptibility to arrhythmia and sudden death. This simulation study identifies arrhythmogenic mechanisms in the rapid-delayed rectifier K+ current (IKr)-linked SQT1 variant of the SQTS. Markov chain (MC) models were found to be superior to Hodgkin-Huxley (HH) models in reproducing experimental data regarding effects of the N588K mutation on KCNH2-encoded hERG. These ionic channel models were then incorporated into human ventricular action potential (AP) models and into 1D and 2D idealised and realistic transmural ventricular tissue simulations and into a 3D anatomical model. In single cell models, the N588K mutation abbreviated ventricular cell AP duration at 90% repolarization (APD90) and decreased the maximal transmural voltage heterogeneity (δV) during APs. This resulted in decreased transmural heterogeneity of APD90 and of the effective refractory period (ERP): effects that are anticipated to be anti-arrhythmic rather than pro-arrhythmic. However, with consideration of transmural heterogeneity of IKr density in the intact tissue model based on the ten Tusscher-Noble-Noble-Panfilov ventricular model, not only did the N588K mutation lead to QT-shortening and increases in T-wave amplitude, but δV was found to be augmented in some local regions of ventricle tissue, resulting in increased tissue vulnerability for uni-directional conduction block and predisposing to formation of re-entrant excitation waves. In 2D and 3D tissue models, the N588K mutation facilitated and maintained re-entrant excitation waves due to the reduced substrate size necessary for sustaining re-entry. Thus, in SQT1 the N588K-hERG mutation facilitates initiation and maintenance of ventricular re-entry, increasing the lifespan of re-entrant spiral waves and the stability of scroll waves in 3D tissue.
Author Summary
Sudden cardiac death may arise in individuals with diseased heart tissue, or in apparently healthy subjects who suffer from genetic defects in ‘ion channel’ proteins, which increase cardiac arrhythmia risk and are associated with significant morbidity and mortality. One rare, though serious, genetic condition is the ‘short QT syndrome’ (SQTS). Although it is now known that the KCNH2-encoded N588K-hERG mutation is associated with the main (SQT1) variant of the SQTS, the mechanisms by which ventricular arrhythmia is initiated and sustained are still unclear due to lack of genotypically accurate experimental models. In this study, we used sophisticated multi-scale computer models of human ventricles in order to investigate the pro-arrhythmic effects of the N588K hERG mutation. It was found that the mutation accelerated the ventricular repolarization process, produced augmented electrical heterogeneity in some local regions of the tissue, leading to increased risk of arrhythmia genesis. It was also found that accelerated ventricular repolarization reduced the substrate size of the tissue required to sustain re-entrant circuits in both two and three dimensions. This study provides new mechanistic insight into understanding of how changes to hERG channel function in SQT1 lead to exacerbated ventricular arrhythmia risk in this inherited arrhythmia syndrome.
doi:10.1371/journal.pcbi.1002313
PMCID: PMC3240585  PMID: 22194679

Results 1-23 (23)