PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  MMP12, Lung Function, and COPD in High-Risk Populations 
The New England journal of medicine  2009;361(27):2599-2608.
BACKGROUND
Genetic variants influencing lung function in children and adults may ultimately lead to the development of chronic obstructive pulmonary disease (COPD), particularly in high-risk groups.
METHODS
We tested for an association between single-nucleotide polymorphisms (SNPs) in the gene encoding matrix metalloproteinase 12 (MMP12) and a measure of lung function (prebronchodilator forced expiratory volume in 1 second [FEV1]) in more than 8300 subjects in seven cohorts that included children and adults. Within the Normative Aging Study (NAS), a cohort of initially healthy adult men, we tested for an association between SNPs that were associated with FEV1 and the time to the onset of COPD. We then examined the relationship between MMP12 SNPs and COPD in two cohorts of adults with COPD or at risk for COPD.
RESULTS
The minor allele (G) of a functional variant in the promoter region of MMP12 (rs2276109 [−82A→G]) was positively associated with FEV1 in a combined analysis of children with asthma and adult former and current smokers in all cohorts (P=2×10−6). This allele was also associated with a reduced risk of the onset of COPD in the NAS cohort (hazard ratio, 0.65; 95% confidence interval [CI], 0.46 to 0.92; P = 0.02) and with a reduced risk of COPD in a cohort of smokers (odds ratio, 0.63; 95% CI, 0.45 to 0.88; P = 0.005) and among participants in a family-based study of early-onset COPD (P = 0.006).
CONCLUSIONS
The minor allele of a SNP in MMP12 (rs2276109) is associated with a positive effect on lung function in children with asthma and in adults who smoke. This allele is also associated with a reduced risk of COPD in adult smokers.
doi:10.1056/NEJMoa0904006
PMCID: PMC2904064  PMID: 20018959
2.  Genetic and environmental influence on lung function impairment in Swedish twins 
Respiratory Research  2010;11(1):92.
Background
The understanding of the influence of smoking and sex on lung function and symptoms is important for understanding diseases such as COPD. The influence of both genes and environment on lung function, smoking behaviour and the presence of respiratory symptoms has previously been demonstrated for each of these separately. Hence, smoking can influence lung function by co-varying not only as an environmental factor, but also by shared genetic pathways. Therefore, the objective was to evaluate heritability for different aspects of lung function, and to investigate how the estimates are affected by adjustments for smoking and respiratory symptoms.
Methods
The current study is based on a selected sample of adult twins from the Swedish Twin Registry. Pairs were selected based on background data on smoking and respiratory symptoms collected by telephone interview. Lung function was measured as FEV1, VC and DLco. Pack years were quantified, and quantitative genetic analysis was performed on lung function data adjusting stepwise for sex, pack years and respiratory symptoms.
Results
Fully adjusted heritability for VC was 59% and did not differ by sex, with smoking and symptoms explaining only a small part of the total variance. Heritabilities for FEV1 and DLco were sex specific. Fully adjusted estimates were10 and 15% in men and 46% and 39% in women, respectively. Adjustment for smoking and respiratory symptoms altered the estimates differently in men and women. For FEV1 and DLco, the variance explained by smoking and symptoms was larger in men. Further, smoking and symptoms explained genetic variance in women, but was primarily associated with shared environmental effects in men.
Conclusion
Differences between men and women were found in how smoking and symptoms influence the variation in lung function. Pulmonary gas transfer variation related to the menstrual cycle has been shown before, and the findings regarding DLco in the present study indicates gender specific environmental susceptibility not shown before. As a consequence the results suggest that patients with lung diseases such as COPD could benefit from interventions that are sex specific.
doi:10.1186/1465-9921-11-92
PMCID: PMC2914039  PMID: 20604964
3.  Interaction between Smoking and Genetic Factors in the Development of Chronic Bronchitis 
Rationale: Smoking is a primary risk factor for chronic bronchitis, emphysema, and chronic obstructive pulmonary disease, but since not all smokers develop disease, it has been suggested that some individuals may be more susceptible to exogenous factors, such as smoking, and that this susceptibility could be genetically determined.
Objectives: The aim of the present study was to assess, in a population-based sample of twins, the following: (1) to what extent genetic factors contribute to the development of chronic bronchitis, including emphysema, taking sex into consideration, and (2) whether the genetic influences on chronic bronchitis, including emphysema, are separate from those for smoking behavior.
Methods: Disease cases and smoking habits were identified in 44,919 twins older than 40 years from the Swedish Twin Registry. Disease was defined as self-reported chronic bronchitis or emphysema, or recurrent cough with phlegm. Individuals who had smoked 10 pack-years or more were defined as smokers. Univariate and bivariate structural equation models were used to estimate the heritability specific for chronic bronchitis and that in common with smoking.
Measurements and Main Results: The heritability estimate for chronic bronchitis was a moderate 40% and only 14% of the genetic influences were shared with smoking.
Conclusions: Genetic factors independent of those related to smoking habits play a role in the development of chronic bronchitis.
doi:10.1164/rccm.200704-565OC
PMCID: PMC2258443  PMID: 18048810
chronic bronchitis; smoking; chronic obstructive pulmonary disease; twin study; genes
4.  Interactions between Glutathione S-Transferase P1, Tumor Necrosis Factor, and Traffic-Related Air Pollution for Development of Childhood Allergic Disease 
Environmental Health Perspectives  2008;116(8):1077-1084.
Background
Air pollutants may induce airway inflammation and sensitization due to generation of reactive oxygen species. The genetic background to these mechanisms could be important effect modifiers.
Objective
Our goal was to assess interactions between exposure to air pollution and single nucleotide polymorphisms (SNPs) in the β2-adrenergic receptor (ADRB2), glutathione S-transferase P1 (GSTP1), and tumor necrosis factor (TNF) genes for development of childhood allergic disease.
Methods
In a birth cohort originally of 4,089 children, we assessed air pollution from local traffic using nitrogen oxides (traffic NOx) as an indicator based on emission databases and dispersion modeling and estimated individual exposure through geocoding of home addresses. We measured peak expiratory flow rates and specific IgE for inhalant and food allergens at 4 years of age, and selected children with asthma symptoms up to 4 years of age (n = 542) and controls (n = 542) for genotyping.
Results
Interaction effects on allergic sensitization were indicated between several GSTP1 SNPs and traffic NOx exposure during the first year of life (pnominal < 0.001–0.06). Children with Ile105Val/Val105Val genotypes were at increased risk of sensitization to any allergen when exposed to elevated levels of traffic NOx (for a difference between the 5th and 95th percentile of exposure: odds ratio = 2.4; 95% confidence interval, 1.0–5.3). In children with TNF-308 GA/AA genotypes, the GSTP1–NOx interaction effect was even more pronounced. We observed no conclusive interaction effects for ADRB2.
Conclusion
The effect of air pollution from traffic on childhood allergy appears to be modified by GSTP1 and TNF variants, supporting a role of genes controlling the antioxidative system and inflammatory response in allergy.
doi:10.1289/ehp.11117
PMCID: PMC2516580  PMID: 18709160
ADRB2; air pollution; allergy; asthma; genetics; GSTP1; interaction; nitrogen oxides; polymorphism; TNF

Results 1-4 (4)