PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  STAT6 promotes bi-directional modulation of PKM2 in liver and adipose inflammatory cells in Rosiglitazone-treated mice 
Scientific Reports  2013;3:2350.
STAT6 interacts with PPARγ to elicit macrophage polarization towards an anti-inflammatory, insulin-sensitizing phenotype. Mice deficient in STAT6 display liver lipid accumulation (hepatosteatosis). Rosiglitazone (RSG), a PPARγ agonist, ameliorates hepatosteatosis and enhances insulin sensitivity. To elucidate the role of STAT6 in PPARγ action on hepatosteatosis we compared liver proteomes of RSG-treated wild type and STAT6-deficient mice and we identified pyruvate kinase M2 (PKM2), a glycolysis and proliferation-regulating enzyme that displayed STAT6-dependent expression. RSG induced PKM2 within inflammatory cells in liver but suppressed its expression in adipose tissue. RSG diminished hepatosteatosis and oxidative stress, enhanced fat accumulation and improved insulin sensitivity in STAT6-deficient mice. Our data reveal a complex interaction between STAT6 and PPARγ in the regulation of liver and adipose tissue lipid depot distribution and design STAT6 as a novel link between inflammatory cell metabolism and adipocyte and hepatocyte function.
doi:10.1038/srep02350
PMCID: PMC3734444  PMID: 23917405
2.  Neopterin Is a Cerebrospinal Fluid Marker for Treatment Outcome Evaluation in Patients Affected by Trypanosoma brucei gambiense Sleeping Sickness 
Background
Post-therapeutic follow-up is essential to confirm cure and to detect early treatment failures in patients affected by sleeping sickness (HAT). Current methods, based on finding of parasites in blood and cerebrospinal fluid (CSF) and counting of white blood cells (WBC) in CSF, are imperfect. New markers for treatment outcome evaluation are needed. We hypothesized that alternative CSF markers, able to diagnose the meningo-encephalitic stage of the disease, could also be useful for the evaluation of treatment outcome.
Methodology/Principal findings
Cerebrospinal fluid from patients affected by Trypanosoma brucei gambiense HAT and followed for two years after treatment was investigated. The population comprised stage 2 (S2) patients either cured or experiencing treatment failure during the follow-up. IgM, neopterin, B2MG, MMP-9, ICAM-1, VCAM-1, CXCL10 and CXCL13 were first screened on a small number of HAT patients (n = 97). Neopterin and CXCL13 showed the highest accuracy in discriminating between S2 cured and S2 relapsed patients (AUC 99% and 94%, respectively). When verified on a larger cohort (n = 242), neopterin resulted to be the most efficient predictor of outcome. High levels of this molecule before treatment were already associated with an increased risk of treatment failure. At six months after treatment, neopterin discriminated between cured and relapsed S2 patients with 87% specificity and 92% sensitivity, showing a higher accuracy than white blood cell numbers.
Conclusions/Significance
In the present study, neopterin was highlighted as a useful marker for the evaluation of the post-therapeutic outcome in patients suffering from sleeping sickness. Detectable levels of this marker in the CSF have the potential to shorten the follow-up for HAT patients to six months after the end of the treatment.
Author Summary
The reduction of the number of lumbar punctures performed during the follow-up of patients affected by sleeping sickness (HAT) is considered a research priority. Follow-up, consisting of the examination of cerebrospinal fluid (CSF) for presence of parasites and for the number of leukocytes, is necessary to assess treatment outcome. However, diagnosis of treatment failure is still imperfect and WHO encourages improvements in defining criteria. Many studies have attempted to standardize actual methods and to define a cut-off for the number of white blood cells in CSF to define relapses, while only few have proposed alternatives to current practice. Here we show that neopterin, already proven to be a powerful marker for staging T. b. gambiense HAT, is also useful in evaluating post-therapeutic outcome. The measurement of neopterin concentration in CSF during the follow-up may allow reduction in the number of lumbar punctures from five to three for the majority of cured patients.
doi:10.1371/journal.pntd.0002088
PMCID: PMC3585011  PMID: 23469311
3.  New biomarkers for stage determination in Trypanosoma brucei rhodesiense sleeping sickness patients 
Accurate stage determination is crucial in the choice of treatment for patients suffering from sleeping sickness, also known as human African trypanosomiasis (HAT). Current staging methods, based on the counting of white blood cells (WBC) and the detection of parasites in the cerebrospinal fluid (CSF) have limited accuracy. We hypothesized that immune mediators reliable for staging T. b. gambiense HAT could also be used to stratify T. b. rhodesiense patients, the less common form of HAT.
A population comprising 85 T. b. rhodesiense patients, 14 stage 1 (S1) and 71 stage 2 (S2) enrolled in Malawi and Uganda, was investigated. The CSF levels of IgM, MMP-9, CXCL13, CXCL10, ICAM-1, VCAM-1, neopterin and B2MG were measured and their staging performances evaluated using receiver operating characteristic (ROC) analyses.
IgM, MMP-9 and CXCL13 were the most accurate markers for stage determination (partial AUC 88%, 86% and 85%, respectively). The combination in panels of three molecules comprising CXCL13-CXCL10-MMP-9 or CXCL13-CXCL10-IgM significantly increased their staging ability to partial AUC 94% (p value < 0.01).
The present study highlighted new potential markers for stage determination of T. b. rhodesiense patients. Further investigations are needed to better evaluate these molecules, alone or in panels, as alternatives to WBC to make reliable choice of treatment.
doi:10.1186/2001-1326-2-1
PMCID: PMC3561069  PMID: 23369533
Sleeping sickness; Biomarkers; Trypanosoma brucei rhodesiense; Cerebrospinal fluid; Stage determination
4.  Blood Glutathione S-Transferase-π as a Time Indicator of Stroke Onset 
PLoS ONE  2012;7(9):e43830.
Background
Ability to accurately determine time of stroke onset remains challenging. We hypothesized that an early biomarker characterized by a rapid increase in blood after stroke onset may help defining better the time window during which an acute stroke patient may be candidate for intravenous thrombolysis or other intravascular procedures.
Methods
The blood level of 29 proteins was measured by immunoassays on a prospective cohort of stroke patients (N = 103) and controls (N = 132). Mann-Whitney U tests, ROC curves and diagnostic odds ratios were applied to evaluate their clinical performances.
Results
Among the 29 molecules tested, GST-π concentration was the most significantly elevated marker in the blood of stroke patients (p<0.001). More importantly, GST-π displayed the best area under the curve (AUC, 0.79) and the best diagnostic odds ratios (10.0) for discriminating early (N = 22, <3 h of stroke onset) vs. late stroke patients (N = 81, >3 h after onset). According to goal-oriented distinct cut-offs (sensitivity(Se)-oriented: 17.7 or specificity(Sp)-oriented: 65.2 ug/L), the GST-π test obtained 91%Se/50%Sp and 50%Se/91%Sp, respectively. Moreover, GST-π showed also the highest AUC (0.83) and performances for detecting patients treated with tPA (N = 12) compared to ineligible patients (N = 103).
Conclusions
This study demonstrates that GST-π can accurately predict the time of stroke onset in over 50% of early stroke patients. The GST-π test could therefore complement current guidelines for tPA administration and potentially increase the number of patients accessing thrombolysis.
doi:10.1371/journal.pone.0043830
PMCID: PMC3444482  PMID: 23028472
5.  Cerebrospinal Fluid Neopterin as Marker of the Meningo-Encephalitic Stage of Trypanosoma brucei gambiense Sleeping Sickness 
PLoS ONE  2012;7(7):e40909.
Background
Sleeping sickness, or human African trypanosomiasis (HAT), is a protozoan disease that affects rural communities in sub-Saharan Africa. Determination of the disease stage, essential for correct treatment, represents a key issue in the management of patients. In the present study we evaluated the potential of CXCL10, CXCL13, ICAM-1, VCAM-1, MMP-9, B2MG, neopterin and IgM to complement current methods for staging Trypanosoma brucei gambiense patients.
Methods and Findings
Five hundred and twelve T. b. gambiense HAT patients originated from Angola, Chad and the Democratic Republic of the Congo (D.R.C.). Their classification as stage 2 (S2) was based on the number of white blood cells (WBC) (>5/µL) or presence of parasites in the cerebrospinal fluid (CSF). The CSF concentration of the eight markers was first measured on a training cohort encompassing 100 patients (44 S1 and 56 S2). IgM and neopterin were the best in discriminating between the two stages of disease with 86.4% and 84.1% specificity respectively, at 100% sensitivity. When a validation cohort (412 patients) was tested, neopterin (14.3 nmol/L) correctly classified 88% of S1 and S2 patients, confirming its high staging power. On this second cohort, neopterin also predicted both the presence of parasites, and of neurological signs, with the same ability as IgM and WBC, the current reference for staging.
Conclusions
This study has demonstrated that neopterin is an excellent biomarker for staging T. b. gambiense HAT patients. A rapid diagnostic test for detecting this metabolite in CSF could help in more accurate stage determination.
doi:10.1371/journal.pone.0040909
PMCID: PMC3399808  PMID: 22815865
6.  pROC: an open-source package for R and S+ to analyze and compare ROC curves 
BMC Bioinformatics  2011;12:77.
Background
Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface.
Results
With data previously imported into the R or S+ environment, the pROC package builds ROC curves and includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows how to perform a typical ROC analysis with pROC.
Conclusions
pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation. pROC is available in two versions: in the R programming language or with a graphical user interface in the S+ statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also distributed through the CRAN and CSAN public repositories, facilitating its installation.
doi:10.1186/1471-2105-12-77
PMCID: PMC3068975  PMID: 21414208
7.  A Combined CXCL10, CXCL8 and H-FABP Panel for the Staging of Human African Trypanosomiasis Patients 
Background
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic tropical disease. It progresses from the first, haemolymphatic stage to a neurological second stage due to invasion of parasites into the central nervous system (CNS). As treatment depends on the stage of disease, there is a critical need for tools that efficiently discriminate the two stages of HAT. We hypothesized that markers of brain damage discovered by proteomic strategies and inflammation-related proteins could individually or in combination indicate the CNS invasion by the parasite.
Methods
Cerebrospinal fluid (CSF) originated from parasitologically confirmed Trypanosoma brucei gambiense patients. Patients were staged on the basis of CSF white blood cell (WBC) count and presence of parasites in CSF. One hundred samples were analysed: 21 from stage 1 (no trypanosomes in CSF and ≤5 WBC/µL) and 79 from stage 2 (trypanosomes in CSF and/or >5 WBC/µL) patients. The concentration of H-FABP, GSTP-1 and S100β in CSF was measured by ELISA. The levels of thirteen inflammation-related proteins (IL-1ra, IL-1β, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-γ, TNF-α, CCL2, CCL4, CXCL8 and CXCL10) were determined by bead suspension arrays.
Results
CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity of 84% and specificity of 100%. Rule Induction Like (RIL) analysis defined a panel characterized by CXCL10, CXCL8 and H-FABP that improved the detection of stage 2 patients to 97% sensitivity and 100% specificity.
Conclusion
This study highlights the value of CXCL10 as a single biomarker for staging T. b. gambiense-infected HAT patients. Further combination of CXCL10 with H-FABP and CXCL8 results in a panel that efficiently rules in stage 2 HAT patients. As these molecules could potentially be markers of other CNS infections and disorders, these results should be validated in a larger multi-centric cohort including other inflammatory diseases such as cerebral malaria and active tuberculosis.
Author Summary
The actual serological and parasitological tests used for the diagnosis of human African trypanosomiasis (HAT), also known as sleeping sickness, are not sensitive and specific enough. The card agglutination test for trypanosomiasis (CATT) assay, widely used for the diagnosis, is restricted to the gambiense form of the disease, and parasitological detection in the blood and cerebrospinal fluid (CSF) is often very difficult. Another very important problem is the difficulty of staging the disease, a crucial step in the decision of the treatment to be given. While eflornithine is difficult to administer, melarsoprol is highly toxic with incidences of reactive encephalopathy as high as 20%. Staging, which could be diagnosed as early (stage 1) or late (stage 2), relies on the examination of CSF for the presence of parasite and/or white blood cell (WBC) counting. However, the parasite is rarely found in CSF and WBC count is not standardised (cutoff set between 5 and 20 WBC per µL). In the present study, we hypothesized that an early detection of stage 2 patients with one or several proteins in association with clinical evaluation and WBC count would improve staging accuracy and allow more appropriate therapeutic interventions.
doi:10.1371/journal.pntd.0000459
PMCID: PMC2696178  PMID: 19554086

Results 1-7 (7)