PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  De novo post-pollen mitosis II tobacco pollen tube transcriptome 
Plant Signaling & Behavior  2012;7(8):918-921.
In our previous study we applied the Agilent 44K tobacco gene chip to introduce and analyze the tobacco male gametophyte transcriptome in mature pollen and 4h pollen tubes. Here we extended our analysis post-pollen mitosis II (PMII) by including a new data set obtained from more advanced stage of the ongoing progamic phase – pollen tubes cultivated in vitro for 24 h. Pollen mitosis II marks key events in the control of male gametophyte development, the production of two sperm cells. In bicellular species covering cca 70% of angiosperms including Nicotiana tabacum, PMII takes place after pollen germination in growing pollen tube. We showed the stable and even slightly increasing complexity of tobacco male gametophyte transcriptome over long period of progamic phase–24 h of pollen tube growth. We also demonstrated the ongoing transcription activity and specific transcript accumulation in post-PMII pollen tubes cultivated in vitro. In all, we have identified 320 genes (2.2%) that were newly transcribed at least after 4h of pollen tube cultivation in vitro. Further, 699 genes (4.8%) showed over 5-fold increased accumulation after the 24h of cultivation.
doi:10.4161/psb.20745
PMCID: PMC3474685  PMID: 22827945
de novo pollen tube transcriptome; male gametophyte development; pollen tube growth; transcriptomics
2.  Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis 
BMC Plant Biology  2012;12:24.
Background
Many flowering plants produce bicellular pollen. The two cells of the pollen grain are destined for separate fates in the male gametophyte, which provides a unique opportunity to study genetic interactions that govern guided single-cell polar expansion of the growing pollen tube and the coordinated control of germ cell division and sperm cell fate specification. We applied the Agilent 44 K tobacco gene chip to conduct the first transcriptomic analysis of the tobacco male gametophyte. In addition, we performed a comparative study of the Arabidopsis root-hair trichoblast transcriptome to evaluate genetic factors and common pathways involved in polarized cell-tip expansion.
Results
Progression of pollen grains from freshly dehisced anthers to pollen tubes 4 h after germination is accompanied with > 5,161 (14.9%) gametophyte-specific expressed probes active in at least one of the developmental stages. In contrast, > 18,821 (54.4%) probes were preferentially expressed in the sporophyte. Our comparative approach identified a subset of 104 pollen tube-expressed genes that overlap with root-hair trichoblasts. Reverse genetic analysis of selected candidates demonstrated that Cu/Zn superoxide dismutase 1 (CSD1), a WD-40 containing protein (BP130384), and Replication factor C1 (NtRFC1) are among the central regulators of pollen-tube tip growth. Extension of our analysis beyond the second haploid mitosis enabled identification of an opposing-dynamic accumulation of core regulators of cell proliferation and cell fate determinants in accordance with the progression of the germ cell cycle.
Conclusions
The current study provides a foundation to isolate conserved regulators of cell tip expansion and those that are unique for pollen tube growth to the female gametophyte. A transcriptomic data set is presented as a benchmark for future functional studies using developing pollen as a model. Our results demonstrated previously unknown functions of certain genes in pollen-tube tip growth. In addition, we highlighted the molecular dynamics of core cell-cycle regulators in the male gametophyte and postulated the first genetic model to account for the differential timing of spermatogenesis among angiosperms and its coordination with female gametogenesis.
doi:10.1186/1471-2229-12-24
PMCID: PMC3305590  PMID: 22340370
3.  MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana 
BMC Genomics  2009;10:643.
Background
New generation sequencing technology has allowed investigation of the small RNA populations of flowering plants at great depth. However, little is known about small RNAs in their reproductive cells, especially in post-meiotic cells of the gametophyte generation. Pollen - the male gametophyte - is the specialised haploid structure that generates and delivers the sperm cells to the female gametes at fertilisation. Whether development and differentiation of the male gametophyte depends on the action of microRNAs and trans-acting siRNAs guiding changes in gene expression is largely unknown. Here we have used 454 sequencing to survey the various small RNA populations present in mature pollen of Arabidopsis thaliana.
Results
In this study we detected the presence of 33 different microRNA families in mature pollen and validated the expression levels of 17 selected miRNAs by Q-RT-PCR. The majority of the selected miRNAs showed pollen-enriched expression compared with leaves. Furthermore, we report for the first time the presence of trans-acting siRNAs in pollen. In addition to describing new patterns of expression for known small RNAs in each of these classes, we identified 7 putative novel microRNAs. One of these, ath-MIR2939, targets a pollen-specific F-box transcript and we demonstrate cleavage of its target mRNA in mature pollen.
Conclusions
Despite the apparent simplicity of the male gametophyte, comprising just two different cell types, pollen not only utilises many miRNAs and trans-acting siRNAs expressed in the somatic tissues but also expresses novel miRNAs.
doi:10.1186/1471-2164-10-643
PMCID: PMC2808329  PMID: 20042113
4.  A Plant Germline-Specific Integrator of Sperm Specification and Cell Cycle Progression 
PLoS Genetics  2009;5(3):e1000430.
The unique double fertilisation mechanism in flowering plants depends upon a pair of functional sperm cells. During male gametogenesis, each haploid microspore undergoes an asymmetric division to produce a large, non-germline vegetative cell and a single germ cell that divides once to produce the sperm cell pair. Despite the importance of sperm cells in plant reproduction, relatively little is known about the molecular mechanisms controlling germ cell proliferation and specification. Here, we investigate the role of the Arabidopsis male germline-specific Myb protein DUO POLLEN1, DUO1, as a positive regulator of male germline development. We show that DUO1 is required for correct male germ cell differentiation including the expression of key genes required for fertilisation. DUO1 is also necessary for male germ cell division, and we show that DUO1 is required for the germline expression of the G2/M regulator AtCycB1;1 and that AtCycB1:1 can partially rescue defective germ cell division in duo1. We further show that the male germline-restricted expression of DUO1 depends upon positive promoter elements and not upon a proposed repressor binding site. Thus, DUO1 is a key regulator in the production of functional sperm cells in flowering plants that has a novel integrative role linking gametic cell specification and cell cycle progression.
Author Summary
Flowering plants, unlike animals, require not one, but two sperm cells for successful fertilisation—one sperm cell to join with the egg cell to produce the embryo and the other to join with the central cell to produce the nutrient-rich endosperm tissue inside the seed. A mystery in this “double fertilization” process was how each single pollen grain could produce the pair of sperm cells needed for fertility and seed production. Here, we report the discovery of a dual role for DUO1, a regulatory gene required for plant sperm cell production. We show that the DUO1 gene is required to promote the division of sperm precursor cells, while at the same time promoting their differentiation into functional sperm cells. DUO1 is required for the expression of a key cell cycle regulator and for the expression of genes that are critical for gamete differentiation and fertilisation. This work provides the first molecular insight into the mechanisms through which cell cycle progression and gamete differentiation are coordinated in flowering plants. This knowledge will be helpful in understanding the mechanisms and evolution of gamete development in flowering plants and may be useful in the control of gene flow and crossing behaviour.
doi:10.1371/journal.pgen.1000430
PMCID: PMC2653642  PMID: 19300502

Results 1-4 (4)