PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Direct phase selection of initial phases from single-wavelength anomalous dispersion (SAD) for the improvement of electron density and ab initio structure determination 
A novel direct phase-selection method to select optimized phases from the ambiguous phases of a subset of reflections to replace the corresponding initial SAD phases has been developed. With the improved phases, the completeness of built residues of protein molecules is enhanced for efficient structure determination.
Optimization of the initial phasing has been a decisive factor in the success of the subsequent electron-density modification, model building and structure determination of biological macromolecules using the single-wavelength anomalous dispersion (SAD) method. Two possible phase solutions (ϕ1 and ϕ2) generated from two symmetric phase triangles in the Harker construction for the SAD method cause the well known phase ambiguity. A novel direct phase-selection method utilizing the θDS list as a criterion to select optimized phases ϕam from ϕ1 or ϕ2 of a subset of reflections with a high percentage of correct phases to replace the corresponding initial SAD phases ϕSAD has been developed. Based on this work, reflections with an angle θDS in the range 35–145° are selected for an optimized improvement, where θDS is the angle between the initial phase ϕSAD and a preliminary density-modification (DM) phase ϕDM NHL. The results show that utilizing the additional direct phase-selection step prior to simple solvent flattening without phase combination using existing DM programs, such as RESOLVE or DM from CCP4, significantly improves the final phases in terms of increased correlation coefficients of electron-density maps and diminished mean phase errors. With the improved phases and density maps from the direct phase-selection method, the completeness of residues of protein molecules built with main chains and side chains is enhanced for efficient structure determination.
doi:10.1107/S1399004714013868
PMCID: PMC4157445  PMID: 25195747
direct phase selection; ab initio structure determination; electron-density improvement
2.  Crystal Structures of Complexes of the Branched-Chain Aminotransferase from Deinococcus radiodurans with α-Ketoisocaproate and l-Glutamate Suggest the Radiation Resistance of This Enzyme for Catalysis 
Journal of Bacteriology  2012;194(22):6206-6216.
Branched-chain aminotransferases (BCAT), which utilize pyridoxal 5′-phosphate (PLP) as a cofactor, reversibly catalyze the transfer of the α-amino groups of three of the most hydrophobic branched-chain amino acids (BCAA), leucine, isoleucine, and valine, to α-ketoglutarate to form the respective branched-chain α-keto acids and glutamate. The BCAT from Deinococcus radiodurans (DrBCAT), an extremophile, was cloned and expressed in Escherichia coli for structure and functional studies. The crystal structures of the native DrBCAT with PLP and its complexes with l-glutamate and α-ketoisocaproate (KIC), respectively, have been determined. The DrBCAT monomer, comprising 358 amino acids, contains large and small domains connected with an interdomain loop. The cofactor PLP is located at the bottom of the active site pocket between two domains and near the dimer interface. The substrate (l-glutamate or KIC) is bound with key residues through interactions of the hydrogen bond and the salt bridge near PLP inside the active site pocket. Mutations of some interaction residues, such as Tyr71, Arg145, and Lys202, result in loss of the specific activity of the enzymes. In the interdomain loop, a dynamic loop (Gly173 to Gly179) clearly exhibits open and close conformations in structures of DrBCAT without and with substrates, respectively. DrBCAT shows the highest specific activity both in nature and under ionizing radiation, but with lower thermal stability above 60°C, than either BCAT from Escherichia coli (eBCAT) or from Thermus thermophilus (HB8BCAT). The dimeric molecular packing and the distribution of cysteine residues at the active site and the molecular surface might explain the resistance to radiation but small thermal stability of DrBCAT.
doi:10.1128/JB.01659-12
PMCID: PMC3486342  PMID: 22984263
3.  Structure of Bacillus amyloliquefaciens α-amylase at high resolution: implications for thermal stability 
The crystal structure of B. amyloliquefaciens α-amylase (BAA) at 1.4 Å resolution revealed ambiguities in the thermal adaptation of homologous proteins in this family.
The crystal structure of Bacillus amyloliquefaciens α-amylase (BAA) at 1.4 Å resolution revealed ambiguities in the thermal adaptation of homologous proteins in this family. The final model of BAA is composed of two molecules in a back-to-back orientation, which is likely to be a consequence of crystal packing. Despite a high degree of identity, comparison of the structure of BAA with those of other liquefying-type α-amylases indicated moderate discrepancies at the secondary-structural level. Moreover, a domain-displacement survey using anisotropic B-factor and domain-motion analyses implied a significant con­tribution of domain B to the total flexibility of BAA, while visual inspection of the structure superimposed with that of B. licheniformis α-amylase (BLA) indicated higher flexibility of the latter in the central domain A. Therefore, it is suggested that domain B may play an important role in liquefying α-­amylases, as its rigidity offers a substantial improvement in thermostability in BLA compared with BAA.
doi:10.1107/S1744309109051938
PMCID: PMC2815676  PMID: 20124706
α-amylases; thermostability; flexibility; alignment
4.  Purification, crystallization and preliminary X-ray crystallographic analysis of branched-chain aminotransferase from Deinococcus radiodurans  
The crystallization of branched-chain aminotransferase from D. radiodurans is described.
The branched-chain amino-acid aminotransferase (BCAT), which requires pyridoxal 5′-phosphate (PLP) as a cofactor, is a key enzyme in the biosynthetic pathway of the hydrophobic amino acids leucine, isoleucine and valine. DrBCAT from Deinococcus radiodurans, which has a molecular weight of 40.9 kDa, was crystallized using the hanging-drop vapour-diffusion method. According to X-ray diffraction data to 2.50 Å resolution from a DrBCAT crystal, the crystal belongs to space group P212121, with unit-cell parameters a = 56.37, b = 90.70, c = 155.47 Å. Preliminary analysis indicates the presence of two DrBCAT molecules in the asymmetric unit, with a solvent content of 47.52%.
doi:10.1107/S1744309107020842
PMCID: PMC2335077  PMID: 17554170
branched-chain amino-acid aminotransferase; Deinococcus radiodurans
5.  Purification, crystallization and preliminary X-ray crystallographic analysis of chitinase from Bacillus cereus NCTU2 
The crystallization of B. cereus chitinase is reported.
Chitinases (EC 3.2.1.14) are found in a broad range of organisms, including bacteria, fungi and higher plants, and play different roles depending on their origin. A chitinase from Bacillus cereus NCTU2 (ChiNCTU2) capable of hydrolyzing chitin as a carbon and nitrogen nutrient has been identified as a member of the family 18 glycoside hydrolases. ChiNCTU2 of molecular weight 36 kDa has been crystallized using the hanging-drop vapour-diffusion method. According to the diffraction of chitinase crystals at 1.10 Å resolution, the crystal belongs to space group P21, with unit-cell parameters a = 50.79, b = 48.79, c = 66.87 Å, β = 99.31°. Preliminary analysis indicates there is one chitinase molecule in the asymmetric unit, with a solvent content of 43.4%.
doi:10.1107/S1744309106031423
PMCID: PMC2242883  PMID: 16946479
chitinase; Bacillus cereus NCTU2
6.  Purification, crystallization and preliminary X-ray crystallographic analysis of rice bifunctional α-amylase/subtilisin inhibitor from Oryza sativa  
The crystallization of rice α-amylase/subtilisin bifunctional inhibitor is reported.
Rice bifunctional α-amylase/subtilisin inhibitor (RASI) can inhibit both α-­amylase from larvae of the red flour beetle (Tribolium castaneum) and subtilisin from Bacillus subtilis. The synthesis of RASI is up-regulated during the late milky stage in developing seeds. The 8.9 kDa molecular-weight RASI from rice has been crystallized using the hanging-drop vapour-diffusion method. According to 1.81 Å resolution X-ray diffraction data from rice RASI crystals, the crystal belongs to space group P21212, with unit-cell parameters a = 79.99, b = 62.95, c = 66.70 Å. Preliminary analysis indicates two RASI molecules in an asymmetric unit with a solvent content of 44%.
doi:10.1107/S1744309106023335
PMCID: PMC2242909  PMID: 16880545
α-amylase/subtilisin inhibitor; rice
7.  Purification, crystallization and preliminary X-ray crystallographic analysis of rice Bowman–Birk inhibitor from Oryza sativa  
Rice Bowman–Birk inhibitor was expressed and crystallized.
Bowman–Birk inhibitors (BBIs) are cysteine-rich proteins with inhibitory activity against proteases that are widely distributed in monocot and dicot species. The expression of rice BBI from Oryza sativa is up-regulated and induced by pathogens or insects during germination of rice seeds. The rice BBI (RBTI) of molecular weight 15 kDa has been crystallized using the hanging-drop vapour-diffusion method. According to the diffraction of rice BBI crystals at a resolution of 2.07 Å, the unit cell belongs to space group P212121, with unit-cell parameters a = 74.37, b = 96.69, c = 100.36 Å. Preliminary analysis indicates four BBI molecules in an asymmetric unit, with a solvent content of 58.29%.
doi:10.1107/S1744309106014795
PMCID: PMC2243081  PMID: 16754971
Bowman–Birk inhibitors; rice

Results 1-7 (7)