Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells 
Journal of Cell Science  2004;117(Pt 4):559-570.
Sec6/8 (exocyst) complex regulates vesicle delivery and polarized membrane growth in a variety of cells, but mechanisms regulating Sec6/8 localization are unknown. In epithelial cells, Sec6/8 complex is recruited to cell-cell contacts with a mixture of junctional proteins, but then sorts out to the apex of the lateral membrane with components of tight junction and nectin complexes. Sec6/8 complex fractionates in a high molecular mass complex with tight junction proteins and a portion of E-cadherin, and co-immunoprecipitates with cell surface-labeled E-cadherin and nectin-2α. Recruitment of Sec6/8 complex to cell-cell contacts can be achieved in fibroblasts when E-cadherin and nectin-2α are co-expressed. These results support a model in which localized recruitment of Sec6/8 complex to the plasma membrane by specific cell-cell adhesion complexes defines a site for vesicle delivery and polarized membrane growth during development of epithelial cell polarity.
PMCID: PMC3368615  PMID: 14709721
Cell polarity; Cell membrane; Intercellular junctions; Intracellular membranes; Metabolism
2.  Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells 
The Journal of Cell Biology  2001;155(4):593-604.
Sec6/8 complex regulates delivery of exocytic vesicles to plasma membrane docking sites, but how it is recruited to specific sites in the exocytic pathway is poorly understood. We identified an Sec6/8 complex on trans-Golgi network (TGN) and plasma membrane in normal rat kidney (NRK) cells that formed either fibroblast- (NRK-49F) or epithelial-like (NRK-52E) intercellular junctions. At both TGN and plasma membrane, Sec6/8 complex colocalizes with exocytic cargo protein, vesicular stomatitis virus G protein (VSVG)-tsO45. Newly synthesized Sec6/8 complex is simultaneously recruited from the cytosol to both sites. However, brefeldin A treatment inhibits recruitment to the plasma membrane and other treatments that block exocytosis (e.g., expression of kinase-inactive protein kinase D and low temperature incubation) cause accumulation of Sec6/8 on the TGN, indicating that steady-state distribution of Sec6/8 complex depends on continuous exocytic vesicle trafficking. Addition of antibodies specific for TGN- or plasma membrane–bound Sec6/8 complexes to semiintact NRK cells results in cargo accumulation in a perinuclear region or near the plasma membrane, respectively. These results indicate that Sec6/8 complex is required for several steps in exocytic transport of vesicles between TGN and plasma membrane.
PMCID: PMC2198873  PMID: 11696560
cell polarity; Golgi apparatus/secretion; cell membrane/metabolism; intercellular junctions/physiology; intracellular membranes/metabolism
3.  Apiconuclear Organization of Microtubules Does Not Specify Protein Delivery from the Trans-Golgi Network to Different Membrane Domains in Polarized Epithelial Cells 
Molecular Biology of the Cell  1998;9(3):685-699.
In nonpolarized epithelial cells, microtubules originate from a broad perinuclear region coincident with the distribution of the Golgi complex and extend outward to the cell periphery (perinuclear [PN] organization). During development of epithelial cell polarity, microtubules reorganize to form long cortical filaments parallel to the lateral membrane, a meshwork of randomly oriented short filaments beneath the apical membrane, and short filaments at the base of the cell; the Golgi becomes localized above the nucleus in the subapical membrane cytoplasm (apiconuclear [AN] organization). The AN-type organization of microtubules is thought to be specialized in polarized epithelial cells to facilitate vesicle trafficking between the trans-Golgi Network (TGN) and the plasma membrane. We describe two clones of MDCK cells, which have different microtubule distributions: clone II/G cells, which gradually reorganize a PN-type distribution of microtubules and the Golgi complex to an AN-type during development of polarity, and clone II/J cells which maintain a PN-type organization. Both cell clones, however, exhibit identical steady-state polarity of apical and basolateral proteins. During development of cell surface polarity, both clones rapidly establish direct targeting pathways for newly synthesized gp80 and gp135/170, and E-cadherin between the TGN and apical and basolateral membrane, respectively; this occurs before development of the AN-type microtubule/Golgi organization in clone II/G cells. Exposure of both clone II/G and II/J cells to low temperature and nocodazole disrupts >99% of microtubules, resulting in: 1) 25–50% decrease in delivery of newly synthesized gp135/170 and E-cadherin to the apical and basolateral membrane, respectively, in both clone II/G and II/J cells, but with little or no missorting to the opposite membrane domain during all stages of polarity development; 2) ∼40% decrease in delivery of newly synthesized gp80 to the apical membrane with significant missorting to the basolateral membrane in newly established cultures of clone II/G and II/J cells; and 3) variable and nonspecific delivery of newly synthesized gp80 to both membrane domains in fully polarized cultures. These results define several classes of proteins that differ in their dependence on intact microtubules for efficient and specific targeting between the Golgi and plasma membrane domains.
PMCID: PMC25297  PMID: 9487135

Results 1-3 (3)