Search tips
Search criteria

Results 1-25 (52)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Genomic location of the human RNA polymerase II general machinery: evidence for a role of TFIIF and Rpb7 at both early and late stages of transcription 
The Biochemical journal  2008;409(1):139-147.
The functions ascribed to the mammalian GTFs (general transcription factors) during the various stages of the RNAPII (RNA polymerase II) transcription reaction are based largely on in vitro studies. To gain insight as to the functions of the GTFs in living cells, we have analysed the genomic location of several human GTF and RNAPII subunits carrying a TAP (tandem-affinity purification) tag. ChIP (chromatin immunoprecipitation) experiments using anti-tag beads (TAP-ChIP) allowed the systematic localization of the tagged factors. Enrichment of regions located close to the TIS (transcriptional initiation site) versus further downstream TRs (transcribed regions) of nine human genes, selected for the minimal divergence of their alternative TIS, were analysed by QPCR (quantitative PCR). We show that, in contrast with reports using the yeast system, human TFIIF (transcription factor IIF) associates both with regions proximal to the TIS and with further downstream TRs, indicating an in vivo function in elongation for this GTF. Unexpectedly, we found that the Rpb7 subunit of RNAPII, known to be required only for the initiation phase of transcription, remains associated with the polymerase during early elongation. Moreover, ChIP experiments conducted under stress conditions suggest that Rpb7 is involved in the stabilization of transcribing polymerase molecules, from initiation to late elongation stages. Together, our results provide for the first time a general picture of GTF function during the RNAPII transcription reaction in live mammalian cells and show that TFIIF and Rpb7 are involved in both early and late transcriptional stages.
PMCID: PMC4498901  PMID: 17848138 CAMSID: cams4842
chromatin immunoprecipitation; general transcription factor; genomic location; RNA polymerase II; tandem-affinity purification; transcription factor IIF (TFIIF)
2.  Systematic Analysis of the Protein Interaction Network for the Human Transcription Machinery Reveals the Identity of the 7SK Capping Enzyme 
Molecular cell  2007;27(2):262-274.
We have performed a survey of soluble human protein complexes containing components of the transcription and RNA processing machineries using protein affinity purification coupled to mass spectrometry. Thirty-two tagged polypeptides yielded a network of 805 high-confidence interactions. Remarkably, the network is significantly enriched in proteins that regulate the formation of protein complexes, including a number of previously uncharacterized proteins for which we have inferred functions. The RNA polymerase II (RNAP II)-associated proteins (RPAPs) are physically and functionally associated with RNAP II, forming an interface between the enzyme and chaperone/scaffolding proteins. BCDIN3 is the 7SK snRNA methylphosphate capping enzyme (MePCE) present in an snRNP complex containing both RNA processing and transcription factors, including the elongation factor P-TEFb. Our results define a high-density protein interaction network for the mammalian transcription machinery and uncover multiple regulatory factors that target the transcription machinery.
PMCID: PMC4498903  PMID: 17643375 CAMSID: cams4848
3.  Topological Localization of the Carboxyl-Terminal Domain of RNA Polymerase II in the Initiation Complex* 
The Journal of biological chemistry  1999;274(28):19868-19873.
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) functions at multiple stages of transcription and is involved in the coupling of transcription to pre-mRNA processing. We have used site-specific protein-DNA photocross-linking to determine the position of the CTD along promoter DNA in the transcriptional pre-initiation complex. Comparison of the promoter contacts made by RNAP II with or without the CTD indicate that the CTD approaches promoter DNA downstream of the transcriptional initiation site between positions +16 and +26. Incubation of pre-assembled initiation complexes with antibodies to the CTD prior to UV irradiation led to specific photocross-linking of the IgG heavy chain to nucleotide +17, indicating that the CTD is accessible for protein-protein interactions in a complex containing RNAP II and the general initiation factors. In conjunction with previously published observations, our structural data are fully compatible with the notion that DNA wrapping around RNAP II places the CTD and the RNA exit channel into juxtaposition and provide a rationale for contacts between the SRB-mediator complex and core RNAP II observed in the RNAP II holoenzyme.
PMCID: PMC4492719  PMID: 10391932 CAMSID: cams4795
4.  Wrapping of Promoter DNA around the RNA Polymerase II Initiation Complex Induced by TFIIF 
Molecular cell  1998;2(3):341-351.
The formation of the RNA polymerase II (Pol II) initiation complex was analyzed using site-specific protein–DNA photo-cross-linking. We show that the RAP74 subunit of transcription factor (TF) IIF, through its RAP30-binding domain and an adjacent region necessary for the formation of homomeric interactions in vitro, dramatically alters the distribution of RAP30, TFIIE, and Pol II along promoter DNA between positions −40 and +26. This isomerization of the complex, which requires both TFIIF and TFIIE, is accompanied by tight wrapping of the promoter DNA for almost a full turn around Pol II. Addition of TFIIH enhances photo-cross-linking of Pol II to a number of promoter positions, suggesting that TFIIH tightens the DNA wrap around the enzyme. We present a general model to describe transcription initiation.
PMCID: PMC4492723  PMID: 9774972 CAMSID: cams4793
5.  RPRD1A and RPRD1B Are Human RNA Polymerase II C-Terminal Domain Scaffolds for Ser5 Dephosphorylation 
The RNA polymerase II (RNAPII) carboxyl-terminal domain (CTD) heptapeptide repeats (Y1-S2-P3-T4-S5-P6-S7) undergo dynamic phosphorylation and dephosphorylation during the transcription cycle to recruit factors that regulate transcription, RNA processing and chromatin modification. We show here that RPRD1A and RPRD1B form homodimers and heterodimers through their coiled-coil domains and interact preferentially via CTD interaction domains (CIDs) with CTD repeats phosphorylated at S2 and S7. Our high resolution crystal structures of the RPRD1A, RPRD1B and RPRD2 CIDs, alone and in complex with CTD phosphoisoforms, elucidate the molecular basis of CTD recognition. In an interesting example of cross-talk between different CTD modifications, our data also indicate that RPRD1A and RPRD1B associate directly with RPAP2 phosphatase and, by interacting with CTD repeats where phospho-S2 and/or phospho-S7 bracket a phospho-S5 residue, serve as CTD scaffolds to coordinate the dephosphorylation of phospho-S5 by RPAP2.
PMCID: PMC4124035  PMID: 24997600
6.  Identification of Herpesvirus Proteins That Contribute to G1/S Arrest 
Journal of Virology  2014;88(8):4480-4492.
Lytic infection by herpesviruses induces cell cycle arrest at the G1/S transition. This appears to be a function of multiple herpesvirus proteins, but only a minority of herpesvirus proteins have been examined for cell cycle effects. To gain a more comprehensive understanding of the viral proteins that contribute to G1/S arrest, we screened a library of over 200 proteins from herpes simplex virus type 1, human cytomegalovirus, and Epstein-Barr virus (EBV) for effects on the G1/S interface, using HeLa fluorescent, ubiquitination-based cell cycle indicator (Fucci) cells in which G1/S can be detected colorimetrically. Proteins from each virus were identified that induce accumulation of G1/S cells, predominantly tegument, early, and capsid proteins. The identification of several capsid proteins in this screen suggests that incoming viral capsids may function to modulate cellular processes. The cell cycle effects of selected EBV proteins were further verified and examined for effects on p53 and p21 as regulators of the G1/S transition. Two EBV replication proteins (BORF2 and BMRF1) were found to induce p53 but not p21, while a previously uncharacterized tegument protein (BGLF2) was found to induce p21 protein levels in a p53-independent manner. Proteomic analyses of BGLF2-interacting proteins identified interactions with the NIMA-related protein kinase (NEK9) and GEM-interacting protein (GMIP). Silencing of either NEK9 or GMIP induced p21 without affecting p53 and abrogated the ability of BGLF2 to further induce p21. Collectively, these results suggest multiple viral proteins contribute to G1/S arrest, including BGLF2, which induces p21 levels likely by interfering with the functions of NEK9 and GMIP.
IMPORTANCE Most people are infected with multiple herpesviruses, whose proteins alter the infected cells in several ways. During lytic infection, the viral proteins block cell proliferation just before the cellular DNA replicates. We used a novel screening method to identify proteins from three different herpesviruses that contribute to this block. Several of the proteins we identified had previously unknown functions or were structural components of the virion. Subsets of these proteins from Epstein-Barr virus were studied for their effects on the cell cycle regulatory proteins p53 and p21, thereby identifying two proteins that induce p53 and one that induces p21 (BGLF2). We identified interactions of BGLF2 with two human proteins, both of which regulate p21, suggesting that BGLF2 induces p21 by interfering with the functions of these two host proteins. Our study indicates that multiple herpesvirus proteins contribute to the cell proliferation block, including components of the incoming virions.
PMCID: PMC3993752  PMID: 24501404
7.  Identification of a BET family Bromodomain / Casein Kinase II / TAF-containing complex as a regulator of mitotic condensin function 
Cell reports  2014;6(5):892-905.
Condensin is a central regulator of mitotic genome structure, with mutants showing poorly condensed chromosomes and profound segregation defects. Here we identify NCT complex, comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), Casein Kinase II (CKII) and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions, but only briefly co-localize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell cycle-directed manner to modulate the activity of condensin during chromosome condensation and decondensation.
PMCID: PMC3969266  PMID: 24565511
Bromodomain; Casein Kinase II; condensin; histone acetylation; mitosis
8.  Mapping the functional yeast ABC transporter interactome 
Nature chemical biology  2013;9(9):10.1038/nchembio.1293.
ABC transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used Membrane Yeast Two-Hybrid (MYTH) technology to map the protein interactome of all non-mitochondrial ABC transporters in the model organism Saccharomy cescerevisiae, and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated interactome. We show that ABC transporters physically associate with proteins involved in a surprisingly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters.
PMCID: PMC3835492  PMID: 23831759
9.  Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli 
PLoS Genetics  2014;10(2):e1004120.
Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems.
Author Summary
Genome-wide genetic interaction (GI) screens have been performed in yeast, but no analogous large-scale studies have yet been reported for bacteria. Here, we have used E. coli synthetic genetic array (eSGA) technology developed by our group to quantitatively map GIs to reveal epistatic dependencies and functional cross-talk among ∼600,000 digenic mutant combinations. By combining this epistasis information with functional modules derived by our group's earlier efforts from proteomic and genomic context (GC)-based methods, we identify several unexpected pathway-level dependencies, functional links between protein complexes, and biological roles of uncharacterized bacterial gene products. As part of the study, two of our pathway predictions from GI screens were validated experimentally, where we confirmed the role of these new components in iron-sulphur biogenesis and ribosome integrity. We also extrapolated the epistatic connectivity diagram of E. coli to 233 distantly related γ-proteobacterial species lacking GI information, and identified co-conserved genes and functional modules important for bacterial pathogenesis. Overall, this study describes the first genome-scale map of GIs in gram-negative bacterium, and through integrative analysis with previously derived protein-protein and GC-based interaction networks presents a number of novel insights into the architecture of bacterial pathways that could not have been discerned through either network alone.
PMCID: PMC3930520  PMID: 24586182
10.  The MoxR ATPase RavA and Its Cofactor ViaA Interact with the NADH:Ubiquinone Oxidoreductase I in Escherichia coli 
PLoS ONE  2014;9(1):e85529.
MoxR ATPases are widespread throughout bacteria and archaea. The experimental evidence to date suggests that these proteins have chaperone-like roles in facilitating the maturation of dedicated protein complexes that are functionally diverse. In Escherichia coli, the MoxR ATPase RavA and its putative cofactor ViaA are found to exist in early stationary-phase cells at 37°C at low levels of about 350 and 90 molecules per cell, respectively. Both proteins are predominantly localized to the cytoplasm, but ViaA was also unexpectedly found to localize to the cell membrane. Whole genome microarrays and synthetic lethality studies both indicated that RavA-ViaA are genetically linked to Fe-S cluster assembly and specific respiratory pathways. Systematic analysis of mutant strains of ravA and viaA indicated that RavA-ViaA sensitizes cells to sublethal concentrations of aminoglycosides. Furthermore, this effect was dependent on RavA's ATPase activity, and on the presence of specific subunits of NADH:ubiquinone oxidoreductase I (Nuo Complex, or Complex I). Importantly, both RavA and ViaA were found to physically interact with specific Nuo subunits. We propose that RavA-ViaA facilitate the maturation of the Nuo complex.
PMCID: PMC3893208  PMID: 24454883
11.  The Carboxyl Terminus of Rtt109 Functions in Chaperone Control of Histone Acetylation 
Eukaryotic Cell  2013;12(5):654-664.
Rtt109 is a fungal histone acetyltransferase (HAT) that catalyzes histone H3 acetylation functionally associated with chromatin assembly. Rtt109-mediated H3 acetylation involves two histone chaperones, Asf1 and Vps75. In vivo, Rtt109 requires both chaperones for histone H3 lysine 9 acetylation (H3K9ac) but only Asf1 for full H3K56ac. In vitro, Rtt109-Vps75 catalyzes both H3K9ac and H3K56ac, whereas Rtt109-Asf1 catalyzes only H3K56ac. In this study, we extend the in vitro chaperone-associated substrate specificity of Rtt109 by showing that it acetylates vertebrate linker histone in the presence of Vps75 but not Asf1. In addition, we demonstrate that in Saccharomyces cerevisiae a short basic sequence at the carboxyl terminus of Rtt109 (Rtt109C) is required for H3K9ac in vivo. Furthermore, through in vitro and in vivo studies, we demonstrate that Rtt109C is required for optimal H3K56ac by the HAT in the presence of full-length Asf1. When Rtt109C is absent, Vps75 becomes important for H3K56ac by Rtt109 in vivo. In addition, we show that lysine 290 (K290) in Rtt109 is required in vivo for Vps75 to enhance the activity of the HAT. This is the first in vivo evidence for a role for Vps75 in H3K56ac. Taken together, our results contribute to a better understanding of chaperone control of Rtt109-mediated H3 acetylation.
PMCID: PMC3647767  PMID: 23457193
12.  Discovery of a chemical probe for the L3MBTL3 methyl-lysine reader domain 
Nature chemical biology  2013;9(3):184-191.
We describe the discovery of UNC1215, a potent and selective chemical probe for the methyl-lysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a Kd of 120 nM, competitively displacing mono- or dimethyl-lysine containing peptides, and is greater than 50-fold selective versus other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a novel 2:2 polyvalent mode of interaction. In cells, UNC1215 is non-toxic and binds directly to L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins and point mutants that disrupt the Kme binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215. Finally, UNC1215 demonstrates a novel Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.
PMCID: PMC3577944  PMID: 23292653
13.  RIPSeeker: a statistical package for identifying protein-associated transcripts from RIP-seq experiments 
Nucleic Acids Research  2013;41(8):e94.
RIP-seq has recently been developed to discover genome-wide RNA transcripts that interact with a protein or protein complex. RIP-seq is similar to both RNA-seq and ChIP-seq, but presents unique properties and challenges. Currently, no statistical tool is dedicated to RIP-seq analysis. We developed RIPSeeker (, a free open-source Bioconductor/R package for de novo RIP peak predictions based on HMM. To demonstrate the utility of the software package, we applied RIPSeeker and six other published programs to three independent RIP-seq datasets and two PAR-CLIP datasets corresponding to six distinct RNA-binding proteins. Based on receiver operating curves, RIPSeeker demonstrates superior sensitivity and specificity in discriminating high-confidence peaks that are consistently agreed on among a majority of the comparison methods, and dominated 9 of the 12 evaluations, averaging 80% area under the curve. The peaks from RIPSeeker are further confirmed based on their significant enrichment for biologically meaningful genomic elements, published sequence motifs and association with canonical transcripts known to interact with the proteins examined. While RIPSeeker is specifically tailored for RIP-seq data analysis, it also provides a suite of bioinformatics tools integrated within a self-contained software package comprehensively addressing issues ranging from post-alignments’ processing to visualization and annotation.
PMCID: PMC3632129  PMID: 23455476
14.  Hsp110 is required for spindle length control 
The Journal of Cell Biology  2012;198(4):623-636.
The Hsp70–Hsp110 chaperone complex antagonizes Cin8 plus-end motility and prevents premature spindle elongation in S phase.
Systematic affinity purification combined with mass spectrometry analysis of N- and C-tagged cytoplasmic Hsp70/Hsp110 chaperones was used to identify new roles of Hsp70/Hsp110 in the cell. This allowed the mapping of a chaperone–protein network consisting of 1,227 unique interactions between the 9 chaperones and 473 proteins and highlighted roles for Hsp70/Hsp110 in 14 broad biological processes. Using this information, we uncovered an essential role for Hsp110 in spindle assembly and, more specifically, in modulating the activity of the widely conserved kinesin-5 motor Cin8. The role of Hsp110 Sse1 as a nucleotide exchange factor for the Hsp70 chaperones Ssa1/Ssa2 was found to be required for maintaining the proper distribution of kinesin-5 motors within the spindle, which was subsequently required for bipolar spindle assembly in S phase. These data suggest a model whereby the Hsp70–Hsp110 chaperone complex antagonizes Cin8 plus-end motility and prevents premature spindle elongation in S phase.
PMCID: PMC3514029  PMID: 22908312
15.  A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair 
Molecular microbiology  2010;79(2):484-502.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks, and 5′-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.
PMCID: PMC3071548  PMID: 21219465
Cas1; CRISPR; DNA recombination; DNA repair; nuclease; YgbT
16.  Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways 
PLoS Genetics  2011;7(11):e1002377.
As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target.
Author Summary
Proper assembly of the cell envelope is essential for bacterial growth, environmental adaptation, and drug resistance. Yet, while the biological roles of the many genes and pathways involved in biosynthesis of the cell envelope have been studied extensively in isolation, how the myriad components intersect functionally to maintain envelope integrity under different growth conditions has not been explored systematically. Genome-scale genetic interaction screens have increasingly been performed to great impact in yeast; no analogous comprehensive studies have yet been reported for bacteria despite their prominence in human health and disease. We addressed this by using a synthetic genetic array technology to generate quantitative maps of genetic interactions encompassing virtually all the components of the cell envelope biosynthetic machinery of the classic model bacterium E. coli in two common laboratory growth conditions (rich and minimal medium). From the resulting networks of high-confidence genetic interactions, we identify condition-specific functional dependencies underlying envelope assembly and global remodeling of genetic backup mechanisms that ensure envelope integrity under environmental challenge.
PMCID: PMC3219608  PMID: 22125496
17.  Control of the RNA polymerase II phosphorylation state in promoter regions by CTD interaction domain-containing proteins RPRD1A and RPRD1B 
Transcription  2011;2(5):237-242.
RNA polymerase II (RNAP II) C-terminal domain (CTD) phosphorylation is important for various transcription-related processes. Here, we identify by affinity purification and mass spectrometry three previously uncharacterized human CTD-interaction domain (CID)-containing proteins, RPRD1A, RPRD1B and RPRD2, which co-purify with RNAP II and three other RNAP II-associated proteins, RPAP2, GRINL1A and RECQL5, but not with the Mediator complex. RPRD1A and RPRD1B can accompany RNAP II from promoter regions to 3′-untranslated regions during transcription in vivo, predominantly interact with phosphorylated RNAP II, and can reduce CTD S5- and S7-phosphorylated RNAP II at target gene promoters. Thus, the RPRD proteins are likely to have multiple important roles in transcription.
PMCID: PMC3265782  PMID: 22231121
RPRD1A; RPRD1B; CID; CTD; RNA polymerase II
18.  The Program for Processing Newly-synthesized Histones H3.1 and H4 
Nature structural & molecular biology  2010;17(11):1343-1351.
The mechanism by which newly synthesized histones are imported into the nucleus and deposited onto replicating chromatin alongside segregating nucleosomal counterparts is poorly understood, yet this program is expected to bear on the putative epigenetic nature of histone posttranslational modifications. In order to define the events by which naïve pre-deposition histones are imported into the nucleus, we biochemically purified and characterized the gamut of histone H3.1-containing complexes from human cytoplasmic fractions and identified their associated histone PTMs. Through reconstitution assays, biophysical analyses, and live cell manipulations, we describe in detail this series of events, namely the assembly of H3-H4 dimers, the acetylation of histones by the HAT1 holoenzyme, and the transfer of histones between chaperones that culminates with their karyopherin-mediated nuclear import. We further demonstrate the high degree of conservation for this pathway between higher and lower eukaryotes.
PMCID: PMC2988979  PMID: 20953179
19.  Ribosome-Dependent ATPase Interacts with Conserved Membrane Protein in Escherichia coli to Modulate Protein Synthesis and Oxidative Phosphorylation 
PLoS ONE  2011;6(4):e18510.
Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.
PMCID: PMC3083400  PMID: 21556145
20.  OrthoNets: simultaneous visual analysis of orthologs and their interaction neighborhoods across different organisms 
Bioinformatics  2011;27(6):883-884.
Motivation: Protein interaction networks contain a wealth of biological information, but their large size often hinders cross-organism comparisons. We present OrthoNets, a Cytoscape plugin that displays protein–protein interaction (PPI) networks from two organisms simultaneously, highlighting orthology relationships and aggregating several types of biomedical annotations. OrthoNets also allows PPI networks derived from experiments to be overlaid on networks extracted from public databases, supporting the identification and verification of new interactors. Any newly identified PPIs can be validated by checking whether their orthologs interact in another organism.
Availability: OrthoNets is freely available at
PMCID: PMC3051336  PMID: 21257609
21.  Defining the budding yeast chromatin-associated interactome 
We report here the first large-scale affinity purification and mass spectrometry (AP-MS) study of chromatin-associated protein, in which over 100 different baits involved in chromatin biology were studied by modified chromatin immunopurification (mChIP)-MS. In particular, focus was placed on poorly studied chromatin binding proteins, such as transcription factors, which have been underrepresented in previous AP-MS studies.mChIP-MS analysis of transcription factors identified dense networks of protein associated with chromatin that were composed of specific transcriptional co-activators, information not accessible through the use of classical AP-MS methods.Finally, we demonstrate that novel protein–protein interactions identified in study by mChIP have functional implications exemplified by the detailed study of both the ubiquitination of the proline isomerase Cpr1 and of histone chaperones involved in the regulation of the HTA1-HTB1 promoter.Our work demonstrates the value of targeted interactome studies, in which affinity purification methods are adapted to the needs of specific baits, as is the case for chromatin binding proteins.
The maintenance of cellular fitness requires living organisms to integrate multiple signals into coordinated outputs. Central to this process is the regulation of the expression of the genetic information encoded into DNA. As a result, there are numerous constraints imposed on gene expression. The access to DNA is restricted by the formation of nucleosomes, in which DNA is wrapped around histone octamers to form chromatin wherein the volume of DNA is considerably reduced. As such, nucleosome positioning is critical and must be defined precisely, particularly during transcription (Workman, 2006). Furthermore, nucleosomes can be actively assembled/disassembled by histone chaperones and can be made to ‘slide' along DNA by the actions of chromatin remodelers. Moreover, the histone proteins are heavily regulated at the expression level and by extensive post-translational modifications (PTMs) (Campos and Reinberg, 2009). Histone PTMs have also been shown to help recruit numerous chromatin-associated factors in accordance with the histone code (Strahl and Allis, 2000). Although our understanding of chromatin and its roles has improved, we still have limited knowledge of the chromatin-associated protein complexes and their interactions.
The characterization of biological systems and of specific subdomain within them, such as chromatin, remains a difficult task. An efficient approach to gain insight in the function of protein is to define its interactome. The underlying principle of protein interaction mapping is that proteins found to interact must be involved in common processes and localization, i.e., guilt by association. The large-scale mapping of proteins interactions allows to annotate protein of unknown functions, implicate protein of known functions in different processes and derive new hypothesis. This is possible because most proteins do not act in isolation but rather as part of complexes, and thus possess interaction partners that can now be detected with the right tools. AP-MS has emerged as a powerful tool for characterizing protein–protein interactions and biological systems in general (Gingras et al, 2007; Gstaiger and Aebersold, 2009).
Recently, we reported the development of a novel affinity purification approach termed mChIP, which was designed to improve the characterization of DNA binding proteins interactome (Lambert et al, 2009). The mChIP method consists of a single affinity purification step, whereby chromatin-associated proteins are isolated from mildly sonicated and gently clarified cellular extracts using magnetic beads coated with antibodies (Lambert et al, 2009; Figure 1A). As such, the mChIP approach maintains chromatin fragments in solution enabling their specific purification, something not previously possible in classical AP-MS methods (Lambert et al, 2009).
In this study, we report the utilization of mChIP followed by MS for the characterization of more than 100 proteins and their associated protein networks (Figure 1B). We initially focused on DNA-associated proteins that had been poorly characterized in past AP-MS studies, such as transcription factors. In addition, many histone modifiers, such as lysine acetyl transferases (KAT) and lysine methyl transferases, critical components of chromatin function and regulation, were also studied by mChIP. This resulted in raw non-redundant mChIP-MS data containing ∼9000 protein–protein interactions between ∼900 proteins. Following a two-step curation process designed to remove common contaminants and protein not specifically associated with the baits under study, a high confidence mChIP-MS data set was produced containing 2966 protein–protein interactions between 724 proteins (Figure 1B). It is important to note that our curation strategy was capable of maintaining the majority of the protein–protein interaction identified in previous AP-MS studies, while removing the bulk of protein–protein interaction not related to chromatin biology. Further analysis of the mChIP-MS data set revealed that for most bait tested, mChIP-MS resulted in the identification of more interaction partners than classical TAP-MS.
Visualization of the mChIP-MS data set was achieved by generating heat maps from two-dimensional hierarchical clustering of the bait–prey interactions. This revealed numerous clusters within our data set supporting functional relationship. For instance, mChIP analysis of the highly homologous heat-shock-inducible transcription factors Msn2 and Msn4 clustered with different transcriptional co-activators. Importantly, our analysis also revealed key differences in the co-activators associated with Msn2 and Msn4 relevant to their function. Another example that we explore in greater details is the Cpr1 proline isomerase, a known member of the Set3 complex (Pijnappel et al, 2001). mChIP-MS analysis of Cpr1 revealed an extended network of associated proteins, including the E3 ubiquitin ligase Bre1 and its association partner Lge1 (Figure 5A). This association raised the possibility of a direct action of Bre1/Lge1 on Cpr1 to ubiquitinate it. In targeted experiments, we observed that Cpr1 is in fact ubiquitinated in a process involving Bre1/Lge1 (Figure 5E), confirming their functional relationship. As such, mChIP is capable of uncovering novel protein–protein interactions with physiological impacts.
In this study, we report how the use of an AP-MS method designed for a given class of protein (chromatin-associated proteins) can help uncover numerous novel protein–protein interactions. Furthermore, our work detected dense chromatin-associated protein networks being co-purified with multiple transcription factors and other DNA binding proteins. The fact that even in the best-characterized model organism Saccharomyces cerevisiae, thousands of novel protein–protein interactions can be detected supports our view that targeted interactome studies are worthwhile and desirable. As such, the budding yeast interactome can still be consider incomplete and warrant further study.
We previously reported a novel affinity purification (AP) method termed modified chromatin immunopurification (mChIP), which permits selective enrichment of DNA-bound proteins along with their associated protein network. In this study, we report a large-scale study of the protein network of 102 chromatin-related proteins from budding yeast that were analyzed by mChIP coupled to mass spectrometry. This effort resulted in the detection of 2966 high confidence protein associations with 724 distinct preys. mChIP resulted in significantly improved interaction coverage as compared with classical AP methodology for ∼75% of the baits tested. Furthermore, mChIP successfully identified novel binding partners for many lower abundance transcription factors that previously failed using conventional AP methodologies. mChIP was also used to perform targeted studies, particularly of Asf1 and its associated proteins, to allow for a understanding of the physical interplay between Asf1 and two other histone chaperones, Rtt106 and the HIR complex, to be gained.
PMCID: PMC3018163  PMID: 21179020
affinity purification; chromatin-associated protein networks; mass spectrometry; nucleosome assembly factor Asf1; protein–DNA interaction
22.  Expanding the Landscape of Chromatin Modification (CM)-Related Functional Domains and Genes in Human 
PLoS ONE  2010;5(11):e14122.
Chromatin modification (CM) plays a key role in regulating transcription, DNA replication, repair and recombination. However, our knowledge of these processes in humans remains very limited. Here we use computational approaches to study proteins and functional domains involved in CM in humans. We analyze the abundance and the pair-wise domain-domain co-occurrences of 25 well-documented CM domains in 5 model organisms: yeast, worm, fly, mouse and human. Results show that domains involved in histone methylation, DNA methylation, and histone variants are remarkably expanded in metazoan, reflecting the increased demand for cell type-specific gene regulation. We find that CM domains tend to co-occur with a limited number of partner domains and are hence not promiscuous. This property is exploited to identify 47 potentially novel CM domains, including 24 DNA-binding domains, whose role in CM has received little attention so far. Lastly, we use a consensus Machine Learning approach to predict 379 novel CM genes (coding for 329 proteins) in humans based on domain compositions. Several of these predictions are supported by very recent experimental studies and others are slated for experimental verification. Identification of novel CM genes and domains in humans will aid our understanding of fundamental epigenetic processes that are important for stem cell differentiation and cancer biology. Information on all the candidate CM domains and genes reported here is publicly available.
PMCID: PMC2993927  PMID: 21124763
23.  Epistatic relationships reveal the functional organization of yeast transcription factors 
A comprehensive quantitative genetic interaction map, or E-MAP, has provided a global view of the functional interdependencies between the components of the transcriptional apparatus in budding yeast.Transcription factors that display aggravating/negative genetic interactions regulate gene expression in an independent rather than coordinated manner.Parallel/compensating relationships between regulators often characterize transcriptional circuits.
Genetic interactions identify the functional interdependencies between genes (Guarente, 1993). They can be either positive (i.e. alleviating) or negative (i.e. aggravating) in nature corresponding to cases where the double mutant grows better or worse, respectively, then expected from growth of the corresponding single mutants (Beyer et al, 2007). Negative genetic interactions between non-essential genes often identify factors involved in parallel pathways, whereas positive ones often correspond to cases where the corresponding proteins are working in the same pathway and/or are physically associated (Beltrao et al, 2010). The epistatic miniarray profile (E-MAP) approach (Schuldiner et al, 2005), which quantitatively and comprehensively identifies both positive and negative genetic interactions on a logically selected set of genes, was used in this study in S. cerevisiae to genetically interrogate the set of 151 sequence-specific transcription factors (STFs) as well as 172 components of the general transcriptional machinery (GTFs).
We found a higher propensity of the group of STFs to strongly genetically interact with GTFs than with themselves (Figure 1A and B). However, within the set of STF–STF genetic interactions, there was a significant enrichment of negative over positive genetic interactions (Figure 1A and C), suggesting that parallel/compensating relationships, rather than linear pathways, predominate within the set of STFs. These genetic trends are in stark contrast to what was previously observed with factors involved in regulating signaling (e.g. kinases and phosphatases), which were significantly enriched in positive over negative genetic interactions (Fiedler et al, 2009).
In addition to providing an overview of the global relationships among TFs, the fine structure of the E-MAP can be used to address the nature of the regulatory architecture controlling individual genes. A variety of regulatory patterns have been described that serve the differing functional requirements of various biological processes (Istrail and Davidson, 2005). Our E-MAP identified several examples of the regulatory relationships between transcription factors, including (1) one TF acting as a repressor of another TF (e.g. Gal80 acting as a repressor of Gal4, the activator of the GAL genes); (2) two TFs acting redundantly to regulate a set of genes (e.g. Gln3 and Gat1, two GATA family activators involved in regulating nitrogen catabolite repression (NCR)); and (3) two TFs regulating genes in a coordinated manner (e.g. Hac1 working with the HDAC complex Rpd3C(L) to regulate expression of early meiotic genes).
Given the complex structures of promoters (Zhu and Zhang, 1999; Chin et al, 2005) and the possible types of regulatory logic (Buchler et al, 2003), we wanted to identify the types of logic that are used in nature. We explored this by combining our genetic interaction data with the information about the network connections between STFs and their targets. By initially focusing on pairs of STFs that share a set of targets defined by the genome-wide binding studies (Harbison et al, 2004; MacIsaac et al, 2006), a total of 110 STF gene pairs were identified that have statistically significant target overlap with a P-value <0.005, whereas 49 pairs have significant overlap at a more stringent cutoff (P<10−7). Several examples were examined in more detail by quantitative growth assay in liquid culture and gene expression profiling of the TF-deletion mutants. In each case, the growth rate of one of the single-deletion mutants is significantly reduced (i.e. ‘the major regulator'), whereas the growth rate of the other single-deletion mutant is similar to that of the wild type (i.e. ‘the minor regulator'). In the absence of the major regulator, the deletion of the minor regulator leads to a more severe growth defect, resulting in a negative genetic interaction (Figure 5A). We examined the response of common target genes of two pairs of TFs (Swi4-Skn7 and Gcr2-Tye7) and found an enrichment of common target genes displaying ‘OR' but not ‘AND' behavior, in the simplified language of Boolean logic. Further examination of the targets revealed that many of them are induced/repressed more by the double deletion than each of the single deletions (Figure 5D). Collectively, these results suggest that frequently TF pairs with negative interactions regulate the transcription of their common target genes in a redundant manner.
The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), between and among genes encoding STFs and GTFs in Saccharomyces cerevisiae. This allowed us to both reconstruct regulatory models for specific subsets of transcription factors and identify global epistatic patterns. Overall, there was a much stronger preference for negative relative to positive genetic interactions among STFs than there was among GTFs. Negative genetic interactions, which often identify factors working in non-essential, redundant pathways, were also enriched for pairs of STFs that co-regulate similar sets of genes. Microarray analysis demonstrated that pairs of STFs that display negative genetic interactions regulate gene expression in an independent rather than coordinated manner. Collectively, these data suggest that parallel/compensating relationships between regulators, rather than linear pathways, often characterize transcriptional circuits.
PMCID: PMC2990640  PMID: 20959818
genetic interaction; regulatory network; transcription factor; transcription regulation
24.  DAnCER: Disease-Annotated Chromatin Epigenetics Resource 
Nucleic Acids Research  2010;39(Database issue):D889-D894.
Chromatin modification (CM) is a set of epigenetic processes that govern many aspects of DNA replication, transcription and repair. CM is carried out by groups of physically interacting proteins, and their disruption has been linked to a number of complex human diseases. CM remains largely unexplored, however, especially in higher eukaryotes such as human. Here we present the DAnCER resource, which integrates information on genes with CM function from five model organisms, including human. Currently integrated are gene functional annotations, Pfam domain architecture, protein interaction networks and associated human diseases. Additional supporting evidence includes orthology relationships across organisms, membership in protein complexes, and information on protein 3D structure. These data are available for 962 experimentally confirmed and manually curated CM genes and for over 5000 genes with predicted CM function on the basis of orthology and domain composition. DAnCER allows visual explorations of the integrated data and flexible query capabilities using a variety of data filters. In particular, disease information and functional annotations are mapped onto the protein interaction networks, enabling the user to formulate new hypotheses on the function and disease associations of a given gene based on those of its interaction partners. DAnCER is freely available at
PMCID: PMC3013761  PMID: 20876685
25.  An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe 
Nature structural & molecular biology  2009;16(12):1286-1293.
Histone variant H2A.Z has a conserved role in genome stability, although it remains unclear how this is mediated. Here we demonstrate in fission yeast that the Swr1 ATPase inserts H2A.Z (Pht1) into chromatin and Kat5 acetyltransferase (Mst1) acetylates it. Deletion or unacetylatable mutation of Pht1 leads to genome instability, primarily caused by chromosome entanglement/breakage at anaphase. This leads to the loss of telomere-proximal markers, though telomere protection and repeat length are unaffected by the absence of Pht1. Strikingly the chromosome entanglement in pht1Δ anaphase cells can be rescued by forcing chromosome condensation prior to anaphase onset. We show that the condensin complex, required for the maintenance of anaphase chromosome condensation, prematurely dissociates from chromatin in the absence of Pht1. This and other findings suggest an important role for H2A.Z in the architecture of anaphase chromosomes.
PMCID: PMC2788674  PMID: 19915592
Chromosome architecture; condensin; H2A.Z; KAT5; RCA; S. pombe

Results 1-25 (52)