Search tips
Search criteria

Results 1-25 (48)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Characterization of a Novel Picornavirus Isolate from a Diseased European Eel (Anguilla anguilla) 
Journal of Virology  2013;87(19):10895-10899.
A novel picornavirus was isolated from specimens of a diseased European eel (Anguilla anguilla). This virus induced a cytopathic effect in eel embryonic kidney cells and high mortality in a controlled transmission study using elvers. Eel picornavirus has a genome of 7,496 nucleotides that encodes a polyprotein of 2,259 amino acids. It has a typical picornavirus genome layout, but its low similarity to known viral proteins suggests a novel species in the family Picornaviridae.
PMCID: PMC3807381  PMID: 23885066
2.  Glycoproteins gB and gH Are Required for Syncytium Formation but Not for Herpesvirus-Induced Nuclear Envelope Breakdown 
Journal of Virology  2013;87(17):9733-9741.
Herpesvirus nucleocapsids are assembled in the nucleus, whereas maturation into infectious virions takes place in the cytosol. Since, due to their size, nucleocapsids cannot pass the nuclear pores, they traverse the nuclear envelope by vesicle-mediated transport. Nucleocapsids bud at the inner nuclear membrane into the perinuclear space, forming primary enveloped particles and are released into the cytosol after fusion of the primary envelope with the outer nuclear membrane. The nuclear egress complex (NEC), consisting of the conserved herpesvirus proteins (p)UL31 and pUL34, is required for this process, whereas the viral glycoproteins gB and gH, which are essential for fusion during penetration, are not. We recently described herpesvirus-induced nuclear envelope breakdown (NEBD) as an alternative egress pathway used in the absence of the NEC. However, the molecular details of this pathway are still unknown. It has been speculated that glycoproteins involved in fusion during entry might play a role in NEBD. By deleting genes encoding glycoproteins gB and gH from the genome of NEBD-inducing pseudorabies viruses, we demonstrate that these glycoproteins are not required for NEBD but are still necessary for syncytium formation, again emphasizing fundamental differences in herpesvirus-induced alterations at the nuclear envelopes and plasma membranes of infected cells.
PMCID: PMC3754109  PMID: 23824797
3.  Chimeric Newcastle Disease Virus Protects Chickens against Avian Influenza in the Presence of Maternally Derived NDV Immunity 
PLoS ONE  2013;8(9):e72530.
Newcastle disease virus (NDV), an avian paramyxovirus type 1, is a promising vector for expression of heterologous proteins from a variety of unrelated viruses including highly pathogenic avian influenza virus (HPAIV). However, pre-existing NDV antibodies may impair vector virus replication, resulting in an inefficient immune response against the foreign antigen. A chimeric NDV-based vector with functional surface glycoproteins unrelated to NDV could overcome this problem. Therefore, an NDV vector was constructed which carries the fusion (F) and hemagglutinin-neuraminidase (HN) proteins of avian paramyxovirus type 8 (APMV-8) instead of the corresponding NDV proteins in an NDV backbone derived from the lentogenic NDV Clone 30 and a gene expressing HPAIV H5 inserted between the F and HN genes. After successful virus rescue by reverse genetics, the resulting chNDVFHN PMV8H5 was characterized in vitro and in vivo. Expression and virion incorporation of the heterologous proteins was verified by Western blot and electron microscopy. Replication of the newly generated recombinant virus was comparable to parental NDV in embryonated chicken eggs. Immunization with chNDVFHN PMV8H5 stimulated full protection against lethal HPAIV infection in chickens without as well as with maternally derived NDV antibodies. Thus, tailored NDV vector vaccines can be provided for use in the presence or absence of routine NDV vaccination.
PMCID: PMC3762792  PMID: 24023747
4.  An Epstein-Barr Virus Mutant Produces Immunogenic Defective Particles Devoid of Viral DNA 
Journal of Virology  2013;87(4):2011-2022.
Virus-like particles (VLPs) from hepatitis B and human papillomaviruses have been successfully used as preventative vaccines against these infectious agents. These VLPs consist of a self-associating capsid polymer formed from a single structure protein and are devoid of viral DNA. Since virions from herpesviruses consist of a large number of molecules of viral and cellular origin, generating VLPs from a subset of these would be a particularly arduous task. Therefore, we have adopted an alternative strategy that consists of producing DNA-free defective virus particles in a cell line infected by a herpesvirus mutant incapable of packaging DNA. We previously reported that an Epstein-Barr virus (EBV) mutant devoid of the terminal repeats (ΔTR) that act as packaging signals in herpesviruses produces substantial amounts of VLPs and of light particles (LPs). However, ΔTR virions retained some infectious genomes, and although these mutants had lost their transforming abilities, this poses potential concerns for clinical applications. Therefore, we have constructed a series of mutants that lack proteins involved in maturation and assessed their ability to produce viral DNA-free VLP/LPs. Some of the introduced mutations were deleterious for capsid maturation and virus production. However, deletion of BFLF1/BFRF1A or of BBRF1 resulted in the production of DNA-free VLPs/LPs. The ΔBFLF1/BFRF1A viruses elicited a potent CD4+ T-cell response that was indistinguishable from the one obtained with wild-type controls. In summary, the defective particles produced by the ΔBFLF1/BFRF1A mutant fulfill the criteria of efficacy and safety expected from a preventative vaccine.
PMCID: PMC3571473  PMID: 23236073
5.  Analysis of Viral and Cellular Factors Influencing Herpesvirus-Induced Nuclear Envelope Breakdown 
Journal of Virology  2012;86(12):6512-6521.
Herpesvirus nucleocapsids are translocated from their assembly site in the nucleus to the cytosol by acquisition of a primary envelope at the inner nuclear membrane which subsequently fuses with the outer nuclear membrane. This transport through the nuclear envelope requires homologs of the conserved herpesviral pUL31 and pUL34 proteins which form the nuclear egress complex (NEC). In its absence, 1,000-fold less virus progeny is produced. We isolated a UL34-negative mutant of the alphaherpesvirus pseudorabies virus (PrV), PrV-ΔUL34Pass, which regained replication competence after serial passages in cell culture by inducing nuclear envelope breakdown (NEBD) (B. G. Klupp, H. Granzow, and T. C. Mettenleiter, J. Virol. 85:8285–8292, 2011). To test whether this phenotype is unique, passaging experiments were repeated with a UL31 deletion mutant. After 60 passages, the resulting PrV-ΔUL31Pass replicated similarly to wild-type PrV. Ultrastructural analyses confirmed escape from the nucleus via NEBD, indicating an inherent genetic disposition in herpesviruses. To identify the mutated viral genes responsible for this phenotype, the genome of PrV-ΔUL34Pass was sequenced and compared to the genomes of parental PrV-Ka and PrV-ΔUL34. Targeted sequencing of PrV-ΔUL31Pass disclosed congruent mutations comprising genes encoding tegument proteins (pUL49, pUL46, pUL21, pUS2), envelope proteins (gI, pUS9), and protease pUL26. To investigate involvement of cellular pathways, different inhibitors of cellular kinases were tested. While induction of apoptosis or inhibition of caspases had no specific effect on the passaged mutants, roscovitine, a cyclin-dependent kinase inhibitor, and U0126, an inhibitor of MEK1/2, specifically impaired replication of the passaged mutants, indicating involvement of mitosis-related processes in herpesvirus-induced NEBD.
PMCID: PMC3393528  PMID: 22491460
7.  Structural Determinants for Nuclear Envelope Localization and Function of Pseudorabies Virus pUL34 
Journal of Virology  2012;86(4):2079-2088.
Herpesvirus proteins pUL34 and pUL31 form a complex at the inner nuclear membrane (INM) which is necessary for efficient nuclear egress. Pseudorabies virus (PrV) pUL34 is a type II membrane protein of 262 amino acids (aa). The transmembrane region (TM) is predicted to be located between aa 245 and 261, leaving only one amino acid in the C terminus that probably extends into the perinuclear space. It is targeted to the nuclear envelope in the absence of other viral proteins, pointing to intrinsic localization motifs, and shows structural similarity to cellular INM proteins like lamina-associated polypeptide (Lap) 2ß and Emerin. To investigate which domains of pUL34 are relevant for localization and function, we constructed chimeric proteins by replacing parts of pUL34 with regions of cellular INM proteins. First the 18 C-terminal amino acids encompassing the TM were exchanged with TM regions and C-terminal domains of Lap2ß and Emerin or with the first TM region of the polytopic lamin B receptor (LBR), including the nine following amino acids. All resulting chimeric proteins complemented the replication defect of PrV-ΔUL34, demonstrating that the substitution of the TM and the extension of the C-terminal domain does not interfere with the function of pUL34. Complementation was reduced but not abolished when the C-terminal 50 aa were replaced by corresponding Lap2ß sequences (pUL34-LapCT50). However, replacing the C-terminal 100 aa (pUL34-LapCT100) resulted in a nonfunctional protein despite continuing pUL31 binding, pointing to an important functional role of this region. The replacement of the N-terminal 100 aa (pUL34-LapNT100) had no effect on nuclear envelope localization but abrogated pUL31 binding and function.
PMCID: PMC3302415  PMID: 22156520
8.  Nuclear Envelope Breakdown Can Substitute for Primary Envelopment-Mediated Nuclear Egress of Herpesviruses ▿  
Journal of Virology  2011;85(16):8285-8292.
Herpesvirus nucleocapsids assemble in the nucleus but mature to infectious virions in the cytoplasm. To gain access to this cellular compartment, nucleocapsids are translocated to the cytoplasm by primary envelopment at the inner nuclear membrane and subsequent fusion of the primary envelope with the outer nuclear membrane. The conserved viral pUL34 and pUL31 proteins play a crucial role in this process. In their absence, viral replication is strongly impaired but not totally abolished. We used the residual infectivity of a pUL34-deleted mutant of the alphaherpesvirus pseudorabies virus (PrV) for reversion analysis. To this end, PrV-ΔUL34 was serially passaged in rabbit kidney cells until final titers of the mutant virus PrV-ΔUL34Pass were comparable to those of wild-type PrV. PrV-ΔUL34Pass produced infectious progeny independently of the pUL34/pUL31 nuclear egress complex and the pUS3 protein kinase. Ultrastructural analyses demonstrated that this effect was due to virus-induced disintegration of the nuclear envelope, thereby releasing immature and mature capsids into the cytosol for secondary envelopment. Our data indicate that nuclear egress primarily serves to transfer capsids through the intact nuclear envelope. Immature and mature intranuclear capsids are competent for further virion maturation once they reach the cytoplasm. However, nuclear egress exhibits a strong bias for nucleocapsids, thereby also functioning as a quality control checkpoint which is abolished by herpesvirus-induced nuclear envelope breakdown.
PMCID: PMC3147978  PMID: 21680518
9.  Ultrastructural Analysis of Virion Formation and Intraaxonal Transport of Herpes Simplex Virus Type 1 in Primary Rat Neurons▿  
Journal of Virology  2010;84(24):13031-13035.
After primary replication at the site of entry into the host, alphaherpesviruses infect and establish latency in neurons. To this end, they are transported within axons retrograde from the periphery to the cell body for replication and in an anterograde direction to synapses for infection of higher-order neurons or back to the periphery. Retrograde transport of incoming nucleocapsids is well documented. In contrast, there is still significant controversy on the mode of anterograde transport. By high-resolution transmission electron microscopy of primary neuronal cultures from embryonic rat superior cervical ganglia infected by pseudorabies virus (PrV), we observed the presence of enveloped virions in axons within vesicles supporting the “married model” of anterograde transport of complete virus particles within vesicles (C. Maresch, H. Granzow, A. Negatsch, B.G. Klupp, W. Fuchs, J.P. Teifke, and T.C. Mettenleiter, J. Virol. 84:5528-5539, 2010). We have now extended these analyses to the related human herpes simplex virus type 1 (HSV-1). We have demonstrated that in neurons infected by HSV-1 strains HFEM, 17+ or SC16, approximately 75% of virus particles observed intraaxonally or in growth cones late after infection constitute enveloped virions within vesicles, whereas approximately 25% present as naked capsids. In general, the number of HSV-1 particles in the axons was significantly less than that observed after PrV infection.
PMCID: PMC3004319  PMID: 20943987
10.  Random Transposon-Mediated Mutagenesis of the Essential Large Tegument Protein pUL36 of Pseudorabies Virus▿  
Journal of Virology  2010;84(16):8153-8162.
Homologs of the pseudorabies virus (PrV) essential large tegument protein pUL36 are conserved throughout the Herpesviridae. pUL36 functions during transport of the nucleocapsid to and docking at the nuclear pore as well as during virion formation after nuclear egress in the cytoplasm. Deletion analyses revealed several nonessential regions within the 3,084-amino-acid PrV pUL36 (S. Böttcher, B. G. Klupp, H. Granzow, W. Fuchs, K. Michael, and T. C. Mettenleiter, J. Virol. 80:9910-9915, 2006; S. Böttcher, H. Granzow, C. Maresch, B. Möhl, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 81:13403-13411, 2007), while the C-terminal 62 amino acids are essential for virus replication (K. Coller, J. Lee, A. Ueda, and G. Smith, J. Virol. 81:11790-11797, 2007). To identify additional functional domains, we performed random mutagenesis of PrV pUL36 by transposon-mediated insertion of a 15-bp linker. By this approach, 26 pUL36 insertion mutants were selected and tested in transient transfection assays for their ability to complement one-step growth and/or viral spread of a PrV UL36 null mutant. Ten insertion mutants in the N-terminal half and 10 in the C terminus complemented both, whereas six insertion mutants clustering in the center of the protein did not complement in either assay. Interestingly, several insertions within conserved parts yielded positive complementation, including those located within the essential C-terminal 62 amino acids. For 15 mutants that mediated productive replication, stable virus recombinants were isolated and further characterized by plaque assay, in vitro growth analysis, and electron microscopy. Except for three mutant viruses, most insertion mutants replicated like wild-type PrV. Two insertion mutants, at amino acids (aa) 597 and 689, were impaired in one-step growth and viral spread and exhibited a defect in virion maturation in the cytoplasm. In contrast, one functional insertion (aa 1800) in a region which otherwise yielded only nonfunctional insertion mutants was impaired in viral spread but not in one-step growth without a distinctive ultrastructural phenotype. In summary, these studies extend and refine previous analyses of PrV pUL36 and demonstrate the different sensitivities of different regions of the protein to functional loss by insertion.
PMCID: PMC2916522  PMID: 20534865
11.  Ultrastructural Analysis of Virion Formation and Anterograde Intraaxonal Transport of the Alphaherpesvirus Pseudorabies Virus in Primary Neurons▿  
Journal of Virology  2010;84(11):5528-5539.
A hallmark of alphaherpesviruses is their capacity to be neuroinvasive and establish latent infections in neurons. After primary replication in epithelial cells at the periphery, entry into nerve endings occurs, followed by retrograde transport of nucleocapsids to the nucleus where viral transcription, genome replication, and nucleocapsid formation take place. Translocation of nucleocapsids to the cytoplasm is followed by axonal transport to infect synaptically linked neurons. Two modes of intraaxonal anterograde herpesvirus transport have been proposed: transport of complete, enveloped virions within vesicles (“married model”), and separate transport of capsids and envelopes (“subassembly model”). To assess this in detail for the alphaherpesvirus pseudorabies virus (PrV), we used high-resolution transmission electron microscopy of primary neuronal cultures from embryonic rat superior cervical ganglia after infection with wild-type and gB-deficient PrV. Our data show that intranuclear capsid maturation, nuclear egress and cytoplasmic secondary envelopment occur as in cultured nonpolarized cells (H. Granzow, F. Weiland, A. Jöns, B. G. Klupp, A. Karger, and T. C. Mettenleiter, J. Virol. 71:2072-2082, 1997). PrV virions were present in axons as enveloped particles within vesicles associated with microtubules and apparently leave the neuron by exocytosis primarily at the growth cone. Only a few nonenveloped nucleocapsids were found in the axon. The same picture was observed after infection by phenotypically complemented gB-deficient PrV, which is able to complete only a single round of replication. Our data thus support intraaxonal anterograde transport of enveloped PrV virions within vesicles following the “married model.”
PMCID: PMC2876598  PMID: 20237081
12.  Intergenotypic Replacement of Lyssavirus Matrix Proteins Demonstrates the Role of Lyssavirus M Proteins in Intracellular Virus Accumulation ▿  
Journal of Virology  2009;84(4):1816-1827.
Lyssavirus assembly depends on the matrix protein (M). We compared lyssavirus M proteins from different genotypes for their ability to support assembly and egress of genotype 1 rabies virus (RABV). Transcomplementation of M-deficient RABV with M from European bat lyssavirus (EBLV) types 1 and 2 reduced the release of infectious virus. Stable introduction of the heterogenotypic M proteins into RABV led to chimeric viruses with reduced virus release and intracellular accumulation of virus genomes. Although the chimeras indicated genotype-specific evolution of M, rapid selection of a compensatory mutant suggested conserved mechanisms of lyssavirus assembly and the requirement for only few adaptive mutations to fit the heterogenotypic M to a RABV backbone. Whereas the compensatory mutant replicated to similar infectious titers as RABV M-expressing virus, ultrastructural analysis revealed that both nonadapted EBLV M chimeras and the compensatory mutant differed from RABV M expressing viruses in the lack of intracellular viruslike structures that are enveloped and accumulate in cisterna of the degranulated and dilated rough endoplasmic reticulum compartment. Moreover, all viruses were able to bud at the plasma membrane. Since the lack of the intracellular viruslike structures correlated with the type of M protein but not with the efficiency of virus release, we hypothesize that the M proteins of EBLV-1 and RABV differ in their target membranes for virus assembly. Although the biological function of intracellular assembly and accumulation of viruslike structures in the endoplasmic reticulum remain unclear, the observed differences could contribute to diverse host tropism or pathogenicity.
PMCID: PMC2812392  PMID: 19955305
13.  Intracellular Localization of the Pseudorabies Virus Large Tegument Protein pUL36▿  
Journal of Virology  2009;83(19):9641-9651.
Homologs of the essential large tegument protein pUL36 of herpes simplex virus 1 are conserved throughout the Herpesviridae, complex with pUL37, and form part of the capsid-associated “inner” tegument. pUL36 is crucial for transport of the incoming capsid to and docking at the nuclear pore early after infection as well as for virion maturation in the cytoplasm. Its extreme C terminus is essential for pUL36 function interacting with pUL25 on nucleocapsids to start tegumentation (K. Coller, J. Lee, A. Ueda, and G. Smith, J. Virol. 81:11790-11797, 2007). However, controversy exists about the cellular compartment in which pUL36 is added to the nascent virus particle. We generated monospecific rabbit antisera against four different regions spanning most of pUL36 of the alphaherpesvirus pseudorabies virus (PrV). By immunofluorescence and immunoelectron microscopy, we then analyzed the intracellular location of pUL36 after transient expression and during PrV infection. While reactivities of all four sera were comparable, none of them showed specific intranuclear staining during PrV infection. In immunoelectron microscopy, neither of the sera stained primary enveloped virions in the perinuclear cleft, whereas extracellular mature virus particles were extensively labeled. However, transient expression of pUL36 alone resulted in partial localization to the nucleus, presumably mediated by nuclear localization signals (NLS) whose functionality was demonstrated by fusion of the putative NLS to green fluorescent protein (GFP) and GFP-tagged pUL25. Since PrV pUL36 can enter the nucleus when expressed in isolation, the NLS may be masked during infection. Thus, our studies show that during PrV infection pUL36 is not detectable in the nucleus or on primary enveloped virions, correlating with the notion that the tegument of mature virus particles, including pUL36, is acquired in the cytosol.
PMCID: PMC2748013  PMID: 19640985
14.  Characterization of Pseudorabies Virus (PrV) Cleavage-Encapsidation Proteins and Functional Complementation of PrV pUL32 by the Homologous Protein of Herpes Simplex Virus Type 1 ▿  
Journal of Virology  2009;83(8):3930-3943.
Cleavage and encapsidation of newly replicated herpes simplex virus type 1 (HSV-1) DNA requires several essential viral gene products that are conserved in sequence within the Herpesviridae. However, conservation of function has not been analyzed in greater detail. For functional characterization of the UL6, UL15, UL28, UL32, and UL33 gene products of pseudorabies virus (PrV), the respective deletion mutants were generated by mutagenesis of the virus genome cloned as a bacterial artificial chromosome (BAC) in Escherichia coli and propagated in transgenic rabbit kidney cells lines expressing the deleted genes. Neither of the PrV mutants was able to produce plaques or infectious progeny in noncomplementing cells. DNA analyses revealed that the viral genomes were replicated but not cleaved into monomers. By electron microscopy, only scaffold-containing immature but not DNA-containing mature capsids were detected in the nuclei of noncomplementing cells infected with either of the mutants. Remarkably, primary envelopment of empty capsids at the nuclear membrane occasionally occurred, and enveloped tegument-containing light particles were formed in the cytoplasm and released into the extracellular space. Immunofluorescence analyses with monospecific antisera of cells transfected with the respective expression plasmids indicated that pUL6, pUL15, and pUL32 were able to enter the nucleus. In contrast, pUL28 and pUL33 were predominantly found in the cytoplasm. Only pUL6 could be unequivocally identified and localized in PrV-infected cells and in purified virions, whereas the low abundance or immunogenicity of the other proteins hampered similar studies. Yeast two-hybrid analyses revealed physical interactions between the PrV pUL15, pUL28, and pUL33 proteins, indicating that, as in HSV-1, a tripartite protein complex might catalyze cleavage and encapsidation of viral DNA. Whereas the pUL6 protein is supposed to form the portal for DNA entry into the capsid, the precise role of the UL32 gene product during this process remains to be elucidated. Interestingly, the defect of UL32-negative PrV could be completely corrected in trans by the homologous protein of HSV-1, demonstrating similar functions. However, trans-complementation of UL32-negative HSV-1 by the PrV protein was not observed.
PMCID: PMC2663260  PMID: 19193798
15.  Effects of Simultaneous Deletion of pUL11 and Glycoprotein M on Virion Maturation of Herpes Simplex Virus Type 1▿  
Journal of Virology  2008;83(2):896-907.
The conserved membrane-associated tegument protein pUL11 and envelope glycoprotein M (gM) are involved in secondary envelopment of herpesvirus nucleocapsids in the cytoplasm. Although deletion of either gene had only moderate effects on replication of the related alphaherpesviruses herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) in cell culture, simultaneous deletion of both genes resulted in a severe impairment in virion morphogenesis of PrV coinciding with the formation of huge inclusions in the cytoplasm containing nucleocapsids embedded in tegument (M. Kopp, H. Granzow, W. Fuchs, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 78:3024-3034, 2004). To test whether a similar phenotype occurs in HSV-1, a gM and pUL11 double deletion mutant was generated based on a newly established bacterial artificial chromosome clone of HSV-1 strain KOS. Since gM-negative HSV-1 has not been thoroughly investigated ultrastructurally and different phenotypes have been ascribed to pUL11-negative HSV-1, single gene deletion mutants were also constructed and analyzed. On monkey kidney (Vero) cells, deletion of either pUL11 or gM resulted in ca.-fivefold-reduced titers and 40- to 50%-reduced plaque diameters compared to those of wild-type HSV-1 KOS, while on rabbit kidney (RK13) cells the defects were more pronounced, resulting in ca.-50-fold titer and 70% plaque size reduction for either mutant. Electron microscopy revealed that in the absence of either pUL11 or gM virion formation in the cytoplasm was inhibited, whereas nuclear stages were not visibly affected, which is in line with the phenotypes of corresponding PrV mutants. Simultaneous deletion of pUL11 and gM led to additive growth defects and, in RK13 cells, to the formation of large intracytoplasmic inclusions of capsids and tegument material, comparable to those in PrV-ΔUL11/gM-infected RK13 cells. The defects of HSV-1ΔUL11 and HSV-1ΔUL11/gM could be partially corrected in trans by pUL11 of PrV. Thus, our data indicate that PrV and HSV-1 pUL11 and gM exhibit similar functions in cytoplasmic steps of virion assembly.
PMCID: PMC2612385  PMID: 19004941
16.  Glycoproteins Required for Entry Are Not Necessary for Egress of Pseudorabies Virus▿  
Journal of Virology  2008;82(13):6299-6309.
In the current perception of the herpesvirus replication cycle, two fusion processes are thought to occur during entry and nuclear egress. For penetration, glycoproteins gB and gH/gL have been shown to be essential, whereas a possible role of these glycoproteins in nuclear egress remains unclear. Viral envelope glycoproteins have been detected by immunolabeling in the nuclear membrane as well as in primary enveloped particles in several herpesviruses, indicating that they might be involved in the fusion process. Moreover, a herpes simplex virus type 1 mutant simultaneously lacking gB and gH was described to be deficient in nuclear egress (A. Farnsworth, T. W. Wisner, M. Webb, R. Roller, G. Cohen, R. Eisenberg, and D. C. Johnson, Proc. Natl. Acad. Sci. USA 104:10187-10192, 2007). To analyze the situation in the related alphaherpesvirus pseudorabies virus (PrV), mutants carrying single and double deletions of glycoproteins gB, gD, gH, and gL were constructed and characterized. We show here that the simultaneous deletion of gB and gD, gB and gH, gD and gH, or gH and gL has no detectable effect on PrV egress, implying that none of these glycoproteins either singly or in the tested combinations is required for nuclear egress. In addition, immunolabeling studies using different mono- or polyclonal sera raised against various PrV glycoproteins did not reveal the presence of viral glycoproteins in the inner nuclear membrane or in primary virions. Thus, our data strongly suggest that different fusion mechanisms are active during virus entry and egress.
PMCID: PMC2447092  PMID: 18417564
17.  Mutagenesis of the Active-Site Cysteine in the Ubiquitin-Specific Protease Contained in Large Tegument Protein pUL36 of Pseudorabies Virus Impairs Viral Replication In Vitro and Neuroinvasion In Vivo ▿  
Journal of Virology  2008;82(12):6009-6016.
Herpesviruses specify a ubiquitin-specific protease activity located within their largest tegument protein. Although its biological role is still largely unclear, mutation within the active site abolished deubiquitinating (DUB) activity and decreased virus replication in vitro and in vivo. To further elucidate the role of DUB activity for herpesvirus replication, the conserved active-site cysteine at amino acid position 26 within pUL36 of Pseudorabies virus (PrV) (Suid herpesvirus 1), a neurotropic alphaherpesvirus, was mutated to serine. Whereas one-step growth kinetics of the resulting mutant virus PrV-UL36(C26S) were moderately reduced, plaque size was decreased to 62% of that of the wild-type virus. Ultrastructural analysis revealed large accumulations of unenveloped nucleocapsids in the cytoplasm, but incorporation of the tegument protein pUL37 was not abolished. After intranasal infection with PrV-UL36(C26S) mice showed survival times two times longer than those of mice infected with wild-type or rescued virus. Thus, the DUB activity is important for PrV replication in vitro and for neuroinvasion in mice.
PMCID: PMC2395145  PMID: 18400848
18.  Partial Functional Complementation of a Pseudorabies Virus UL25 Deletion Mutant by Herpes Simplex Virus Type 1 pUL25 Indicates Overlapping Functions of Alphaherpesvirus pUL25 Proteins▿  
Journal of Virology  2008;82(12):5725-5734.
Homologs of the UL25 gene product of herpes simplex virus 1 (HSV-1) are highly conserved among the Herpesviridae. However, their exact function during viral replication is unknown. Current evidence suggests that in the alphaherpesvirus pseudorabies virus (PrV) the capsid-associated pUL25 plays a role in primary envelopment of DNA-containing mature capsids at the inner nuclear membrane. In the absence of pUL25, capsids were found in close association with the inner nuclear membrane, but nuclear egress was not observed (B. G. Klupp, H. Granzow, G. M. Keil, and T. C. Mettenleiter, J. Virol. 80:6235-6246, 2006). In contrast, HSV-1 pUL25 has been assigned a role in stable packaging of viral genomes (N. Stow, J. Virol. 75:10755-10765, 2001). Despite these apparently divergent functions, we wanted to assess whether the high sequence homology translates into functional homology. Therefore, we first analyzed a newly constructed HSV-1 UL25 deletion mutant in our assay system and observed a similar phenotype as in PrV. In the nuclei of infected cells, numerous electron-dense C capsids were detected, whereas primary envelopment of these capsids did not ensue. In agreement with results from PrV, vesicles were observed in the perinuclear space. Since these data indicated functional homology, we analyzed the ability of pUL25 of HSV-1 to complement a PrV UL25 deletion mutant and vice versa. Whereas a HSV-1 pUL25-expressing cell line partially complemented the pUL25 defect in PrV, reciprocal complementation of a HSV-1 UL25 deletion mutant by PrV pUL25 was not observed. Thus, our data demonstrate overlapping, although not identical functions of these two conserved herpesvirus proteins, and point to a conserved functional role in herpes virion formation.
PMCID: PMC2395125  PMID: 18400859
19.  Identification of Functional Domains within the Essential Large Tegument Protein pUL36 of Pseudorabies Virus▿  
Journal of Virology  2007;81(24):13403-13411.
Proteins of the capsid proximal tegument are involved in the transport of incoming capsids to the nucleus and secondary envelopment after nuclear egress. Homologs of the essential large capsid proximal tegument protein pUL36 are conserved within the Herpesviridae. They interact with another tegument component, pUL37, and contain a deubiquitinating activity in their N termini which, however, is not essential for virus replication. Whereas an internal deletion of 709 amino acids (aa) within the C-terminal half of the alphaherpesvirus pseudorabies virus (PrV) pUL36 does not impair its function (S. Böttcher, B. G. Klupp, H. Granzow, W. Fuchs, K. Michael, and T. C. Mettenleiter, J. Virol. 80:9910-9915, 2006), deletion of the very C terminus does (J. Lee, G. Luxton, and G. A. Smith, J. Virol. 80:12086-12094, 2006). For further characterization we deleted several predicted functional and structural motifs within PrV pUL36 and analyzed the resulting phenotypes in cell culture and a mouse infection model. Extension of the internal deletion to encompass aa 2087 to 2981 exerted only minor effects on virus replication but resulted in prolonged mean survival times of infected mice. Any additional extension did not yield viable virus. Deletion of an N-terminal region containing the deubiquitinating activity (aa 22 to 248) only slightly impaired viral replication in cell culture but slowed neuroinvasion in our mouse model, whereas a strong impairment of viral replication was observed after simultaneous removal of both nonessential domains. Absence of a region containing two predicted leucine zipper motifs (aa 748 to 991) also strongly impaired virus replication and spread. Thus, we identify several domains within the PrV UL36 protein, which, though not essential, are nevertheless important for virus replication.
PMCID: PMC2168856  PMID: 17928337
20.  Relevance of the Interaction between Alphaherpesvirus UL3.5 and UL48 Proteins for Virion Maturation and Neuroinvasion▿  
Journal of Virology  2007;81(17):9307-9318.
The UL3.5 and UL48 genes, which are conserved in most alphaherpesvirus genomes, are important for maturation of pseudorabies virus (PrV) particles in the cytoplasm of infected cells (W. Fuchs, B. G. Klupp, H. J. Rziha, and T. C. Mettenleiter, J. Virol. 70:3517-3527, 1996; W. Fuchs, H. Granzow, B. G. Klupp, M. Kopp and T. C. Mettenleiter, J. Virol. 76:6729-6742, 2002). In bovine herpesvirus 1 (BoHV-1), the homologous gene products pUL3.5 and pUL48 have been demonstrated to interact physically (N. Lam and G. Letchworth, J. Virol. 74:2876-2884, 2000). Moreover, BoHV-1 pUL3.5 partially complemented a pUL3.5 defect in PrV (W. Fuchs, H. Granzow, and T. C. Mettenleiter, J. Virol. 71:8886-8892, 1997). By using coimmunoprecipitation and yeast two-hybrid studies, we observed a similar interaction between pUL3.5 and pUL48 of PrV, as well as a heterologous interaction between the PrV and BoHV-1 gene products. The relevant domain could be confined to the first 43 amino acids of PrV pUL3.5. Unlike its BoHV-1 homologue, PrV pUL3.5 is processed by proteolytic cleavage, and only an abundant 14-kDa fragment consisting of amino acids 1 to ≥116 could be detected by peptide mass fingerprint analysis of purified wild-type PrV particles, which also contain the pUL48 tegument component. To determine the biological relevance of the protein-protein interaction, pUL3.5-, pUL48-, and double-negative PrV mutants were analyzed in parallel. All deletion mutants were replication competent but exhibited significantly reduced plaque sizes and virus titers in cultured rabbit kidney cells compared to wild-type and rescued viruses, which correlated with a delayed neuroinvasion in intranasally infected mice. Remarkably, the defects of the double-negative mutant were similar to those of pUL48-negative virus. Electron microscopy of cells infected with either deletion mutant revealed the retention of naked nucleocapsids in the cytoplasm and the absence of mature virus particles. In summary, our studies for the first time demonstrate the relevance of the pUL3.5-pUL48 interaction for secondary envelopment of an alphaherpesvirus, give a molecular basis for the observed trans-complementation between the PrV and BHV-1 pUL3.5 homologs, yield conclusive evidence for the incorporation of a proteolytically processed pUL3.5 into PrV virions, and demonstrate the importance of both proteins for neuroinvasion and neurovirulence of PrV.
PMCID: PMC1951408  PMID: 17581981
21.  Characterization of White Bream Virus Reveals a Novel Genetic Cluster of Nidoviruses▿  
Journal of Virology  2006;80(23):11598-11609.
The order Nidovirales comprises viruses from the families Coronaviridae (genera Coronavirus and Torovirus), Roniviridae (genus Okavirus), and Arteriviridae (genus Arterivirus). In this study, we characterized White bream virus (WBV), a bacilliform plus-strand RNA virus isolated from fish. Analysis of the nucleotide sequence, organization, and expression of the 26.6-kb genome provided conclusive evidence for a phylogenetic relationship between WBV and nidoviruses. The polycistronic genome of WBV contains five open reading frames (ORFs), called ORF1a, -1b, -2, -3, and -4. In WBV-infected cells, three subgenomic RNAs expressing the structural proteins S, M, and N were identified. The subgenomic RNAs were revealed to share a 42-nucleotide, 5′ leader sequence that is identical to the 5′-terminal genome sequence. The data suggest that a conserved nonanucleotide sequence, CA(G/A)CACUAC, located downstream of the leader and upstream of the structural protein genes acts as the core transcription-regulating sequence element in WBV. Like other nidoviruses with large genomes (>26 kb), WBV encodes in its ORF1b an extensive set of enzymes, including putative polymerase, helicase, ribose methyltransferase, exoribonuclease, and endoribonuclease activities. ORF1a encodes several membrane domains, a putative ADP-ribose 1"-phosphatase, and a chymotrypsin-like serine protease whose activity was established in this study. Comparative sequence analysis revealed that WBV represents a separate cluster of nidoviruses that significantly diverged from toroviruses and, even more, from coronaviruses, roniviruses, and arteriviruses. The study adds to the amazing diversity of nidoviruses and appeals for a more extensive characterization of nonmammalian nidoviruses to better understand the evolution of these largest known RNA viruses.
PMCID: PMC1642614  PMID: 16987966
22.  Identification of a 709-Amino-Acid Internal Nonessential Region within the Essential Conserved Tegument Protein (p)UL36 of Pseudorabies Virus 
Journal of Virology  2006;80(19):9910-9915.
Tegument proteins homologous to the essential herpes simplex virus type 1 UL36 gene product (p)UL36 are conserved throughout the Herpesviridae and constitute the largest herpesvirus-encoded proteins. So far, only limited information is available on their functions, which include complex formation with the (p)UL37 homologs via an N-terminal domain and a deubiquitinating activity in the extreme N terminus. For further analysis we constructed deletion mutants lacking 437, 784, 926, 1,046, 1,217, or 1,557 amino acids (aa) from the C terminus. While none of them supported replication of a pseudorabies virus (PrV) UL36 deletion mutant, a mutant polypeptide with an internal deletion from aa 2087 to 2795, which comprises a proline/alanine-rich region, fully complemented the lethal replication defect. Thus, our data indicate that the extreme C terminus of (p)UL36 fulfills an essential role in PrV replication, while a large internal portion of the C-terminal half of the protein is dispensable for replication in cell culture.
PMCID: PMC1617258  PMID: 16973597
23.  The Capsid-Associated UL25 Protein of the Alphaherpesvirus Pseudorabies Virus Is Nonessential for Cleavage and Encapsidation of Genomic DNA but Is Required for Nuclear Egress of Capsids 
Journal of Virology  2006;80(13):6235-6246.
Homologs of the UL25 gene product of herpes simplex virus (HSV) have been identified in all three subfamilies of the Herpesviridae. However, their exact function during viral replication is not yet known. Whereas earlier studies indicated that the UL25 protein of HSV-1 is not required for cleavage of newly replicated viral DNA but is necessary for stable encapsidation (A. R. McNab, P. Desai, S. Person, L. Roof, D. R. Thompson, W. W. Newcomb, J. C. Brown, and F. L. Homa, J. Virol. 72:1060-1070, 1998), viral DNA packaging has recently been demonstrated to occur in the absence of UL25, although at significantly decreased levels compared to wild-type HSV-1 (N. Stow, J. Virol. 75:10755-10765 2001). To clarify the functional role of UL25 we analyzed the homologous protein of the alphaherpesvirus pseudorabies virus (PrV). PrV UL25 was found to be essential for viral replication, as a mutant virus lacking the UL25 protein required UL25-expressing cells for productive propagation. In the absence of the UL25 protein, newly replicated PrV DNA was cleaved and DNA-containing C-type capsids were detected in infected cell nuclei. However, although capsids were frequently found in close association with the inner nuclear membrane, nuclear egress was not observed. Consequently, no capsids were found in the cytoplasm, resulting in an inhibition of virion morphogenesis. In contrast, the formation of capsidless enveloped tegument structures (L particles) in the cytoplasm was readily observed. Thus, our data demonstrate that the PrV UL25 protein is not essential for cleavage and encapsidation of viral genomes, although both processes occur more efficiently in the presence of the protein. However, the presence of the PrV UL25 protein is a prerequisite for nuclear egress. By immunoelectron microscopy, we detected UL25-specific label on DNA-containing C capsids but not on other intranuclear immature or defective capsid forms. Thus, the PrV UL25 protein may represent the hitherto missing trigger that allows primary envelopment preferably of DNA-filled C capsids.
PMCID: PMC1488961  PMID: 16775311
24.  Identification, Subviral Localization, and Functional Characterization of the Pseudorabies Virus UL17 Protein 
Journal of Virology  2005;79(21):13442-13453.
Homologs of the UL17 gene of the alphaherpesvirus herpes simplex virus 1 (HSV-1) are conserved in all three subfamilies of herpesviruses. However, only the HSV-1 protein has so far been characterized in any detail. To analyze UL17 of pseudorabies virus (PrV) the complete 597-amino-acid protein was expressed in Escherichia coli and used for rabbit immunization. The antiserum recognized a 64-kDa protein in PrV-infected cell lysates and purified virions, identifying PrV UL17 as a structural virion component. In indirect immunofluorescence analyses of PrV-infected cells the protein was predominantly found in the nucleus. In electron microscopic studies after immunogold labeling of negatively stained purified virion preparations, UL17-specific label was detected on single, mostly damaged capsids, whereas complete virions and the majority of capsids were free of label. In ultrathin sections of infected cells, label was primarily found dispersed around scaffold-containing B-capsids, whereas on DNA-filled C-capsids it was located in the center. Empty intranuclear A-capsids were free of label, as were extracellular capsid-less L-particles. Functional characterization of PrV-ΔUL17F, a deletion mutant lacking codons 23 to 444, demonstrated that cleavage of viral DNA into unit-length genomes was inhibited in the absence of UL17. In electron microscopic analyses of PrV-ΔUL17F-infected RK13 cells, DNA-containing capsids were not detected, while numerous capsidless L-particles were observed. In summary, our data indicate that the PrV UL17 protein is an internal nucleocapsid protein necessary for DNA cleavage and packaging but suggest that the protein is not a prominent part of the tegument.
PMCID: PMC1262560  PMID: 16227265
25.  The UL7 Gene of Pseudorabies Virus Encodes a Nonessential Structural Protein Which Is Involved in Virion Formation and Egress 
Journal of Virology  2005;79(17):11291-11299.
Homologues of the UL7 gene of herpes simplex virus type 1 are conserved in alpha-, beta-, and gammaherpesviruses. However, little is known about their functions. Using a monospecific rabbit antiserum raised against a bacterial fusion protein, we identified the UL7 gene product of the neurotropic alphaherpesvirus pseudorabies virus (PrV). In Western blot analyses of infected cells and purified PrV particles the serum specifically detected a 29-kDa protein, which matches the calculated mass of the 266-amino-acid translation product of PrV UL7. For functional analysis, UL7 was deleted by mutagenesis of an infectious full-length clone of the PrV genome in Escherichia coli. The obtained recombinant PrV-ΔUL7F was replication competent in rabbit kidney cells, but maximum virus titers were decreased nearly 10-fold and plaque diameters were reduced by ca. 60% compared to wild-type PrV. Electron microscopy of infected cells revealed that in the absence of UL7, formation and nuclear egress of nucleocapsids were not affected, whereas secondary envelopment of cytoplasmic nucleocapsids appeared to be delayed and release of mature virions was less efficient. The observed replication defects were corrected by repair of the viral UL7 gene or by propagation of PrV-ΔUL7F in UL7-expressing cells. PrV-ΔUL7F was moderately attenuated in mice. Compared to wild-type virus, mean survival times were prolonged from 2 to 3 days after intranasal infection. However, neuroinvasion and transneuronal spread of PrV were not abolished in the absence of UL7. Thus, UL7 encodes a virion protein of PrV, which plays a role during virion maturation and egress both in vitro and in vivo.
PMCID: PMC1193624  PMID: 16103181

Results 1-25 (48)