PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  A Novel Botrytis Species Is Associated with a Newly Emergent Foliar Disease in Cultivated Hemerocallis 
PLoS ONE  2014;9(6):e89272.
Foliar tissue samples of cultivated daylilies (Hemerocallis hybrids) showing the symptoms of a newly emergent foliar disease known as ‘spring sickness’ were investigated for associated fungi. The cause(s) of this disease remain obscure. We isolated repeatedly a fungal species which proved to be member of the genus Botrytis, based on immunological tests. DNA sequence analysis of these isolates, using several different phyogenetically informative genes, indicated that they represent a new Botrytis species, most closely related to B. elliptica (lily blight, fire blight) which is a major pathogen of cultivated Lilium. The distinction of the isolates was confirmed by morphological analysis of asexual sporulating cultures. Pathogenicity tests on Hemerocallis tissues in vitro demonstrated that this new species was able to induce lesions and rapid tissue necrosis. Based on this data, we infer that this new species, described here as B. deweyae, is likely to be an important contributor to the development of ‘spring sickness’ symptoms. Pathogenesis may be promoted by developmental and environmental factors that favour assault by this necrotrophic pathogen. The emergence of this disease is suggested to have been triggered by breeding-related changes in cultivated hybrids, particularly the erosion of genetic diversity. Our investigation confirms that emergent plant diseases are important and deserve close monitoring, especially in intensively in-bred plants.
doi:10.1371/journal.pone.0089272
PMCID: PMC4041564  PMID: 24887415
2.  Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci 
BMC Plant Biology  2014;14:88.
Background
The identification of QTL involved in heterosis formation is one approach to unravel the not yet fully understood genetic basis of heterosis - the improved agronomic performance of hybrid F1 plants compared to their inbred parents. The identification of candidate genes underlying a QTL is important both for developing markers and determining the molecular genetic basis of a trait, but remains difficult owing to the large number of genes often contained within individual QTL. To address this problem in heterosis analysis, we applied a meta-analysis strategy for grain yield (GY) of Zea mays L. as example, incorporating QTL-, hybrid field-, and parental gene expression data.
Results
For the identification of genes underlying known heterotic QTL, we made use of tight associations between gene expression pattern and the trait of interest, identified by correlation analyses. Using this approach genes strongly associated with heterosis for GY were discovered to be clustered in pericentromeric regions of the complex maize genome. This suggests that expression differences of sequences in recombination-suppressed regions are important in the establishment of heterosis for GY in F1 hybrids and also in the conservation of heterosis for GY across genotypes. Importantly functional analysis of heterosis-associated genes from these genomic regions revealed over-representation of a number of functional classes, identifying key processes contributing to heterosis for GY. Based on the finding that the majority of the analyzed heterosis-associated genes were addtitively expressed, we propose a model referring to the influence of cis-regulatory variation on heterosis for GY by the compensation of fixed detrimental expression levels in parents.
Conclusions
The study highlights the utility of a meta-analysis approach that integrates phenotypic and multi-level molecular data to unravel complex traits in plants. It provides prospects for the identification of genes relevant for QTL, and also suggests a model for the potential role of additive expression in the formation and conservation of heterosis for GY via dominant, multigenic quantitative trait loci. Our findings contribute to a deeper understanding of the multifactorial phenomenon of heterosis, and thus to the breeding of new high yielding varieties.
doi:10.1186/1471-2229-14-88
PMCID: PMC4234143  PMID: 24693880
Heterosis; Maize; QTL; Grain yield; Additive gene expression; Haplotype
3.  Emerging Roles for Non-Coding RNAs in Male Reproductive Development in Flowering Plants 
Biomolecules  2012;2(4):608-621.
Knowledge of sexual reproduction systems in flowering plants is essential to humankind, with crop fertility vitally important for food security. Here, we review rapidly emerging new evidence for the key importance of non-coding RNAs in male reproductive development in flowering plants. From the commitment of somatic cells to initiating reproductive development through to meiosis and the development of pollen—containing the male gametes (sperm cells)—in the anther, there is now overwhelming data for a diversity of non-coding RNAs and emerging evidence for crucial roles for them in regulating cellular events at these developmental stages. A particularly exciting development has been the association of one example of cytoplasmic male sterility, which has become an unparalleled breeding tool for producing new crop hybrids, with a non-coding RNA locus.
doi:10.3390/biom2040608
PMCID: PMC4030863  PMID: 24970151
reproduction; flowering plant; pollen; gametophyte; fertility; small RNA; non-coding RNA; cytoplasmic male sterility
4.  Pollen terminology. An illustrated handbook 
Annals of Botany  2009;105(2):264-ix.
doi:10.1093/aob/mcp289
PMCID: PMC2814762
5.  MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana 
BMC Genomics  2009;10:643.
Background
New generation sequencing technology has allowed investigation of the small RNA populations of flowering plants at great depth. However, little is known about small RNAs in their reproductive cells, especially in post-meiotic cells of the gametophyte generation. Pollen - the male gametophyte - is the specialised haploid structure that generates and delivers the sperm cells to the female gametes at fertilisation. Whether development and differentiation of the male gametophyte depends on the action of microRNAs and trans-acting siRNAs guiding changes in gene expression is largely unknown. Here we have used 454 sequencing to survey the various small RNA populations present in mature pollen of Arabidopsis thaliana.
Results
In this study we detected the presence of 33 different microRNA families in mature pollen and validated the expression levels of 17 selected miRNAs by Q-RT-PCR. The majority of the selected miRNAs showed pollen-enriched expression compared with leaves. Furthermore, we report for the first time the presence of trans-acting siRNAs in pollen. In addition to describing new patterns of expression for known small RNAs in each of these classes, we identified 7 putative novel microRNAs. One of these, ath-MIR2939, targets a pollen-specific F-box transcript and we demonstrate cleavage of its target mRNA in mature pollen.
Conclusions
Despite the apparent simplicity of the male gametophyte, comprising just two different cell types, pollen not only utilises many miRNAs and trans-acting siRNAs expressed in the somatic tissues but also expresses novel miRNAs.
doi:10.1186/1471-2164-10-643
PMCID: PMC2808329  PMID: 20042113

Results 1-5 (5)