PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Cks1 Promotion of S Phase Entry and Proliferation Is Independent of p27Kip1 Suppression 
Molecular and Cellular Biology  2012;32(13):2416-2427.
Cks1 is an activator of the SCFSkp2 ubiquitin ligase complex that targets the cell cycle inhibitor p27Kip1 for degradation. The loss of Cks1 results in p27Kip1 accumulation and decreased proliferation and inhibits tumorigenesis. We identify here a function of Cks1 in mammalian cell cycle regulation that is independent of p27Kip1. Specifically, Cks1−/−; p27Kip1−/− mouse embryonic fibroblasts retain defects in the G1-S phase transition that are coupled with decreased Cdk2-associated kinase activity and defects in proliferation that are associated with Cks1 loss. Furthermore, concomitant loss of Cks1 does not rescue the tumor suppressor function of p27Kip1 that is manifest in various organs of p27Kip1−/− mice. In contrast, defects in mitotic entry and premature senescence manifest in Cks1−/− cells are p27Kip1 dependent. Collectively, these findings establish p27Kip1-independent functions of Cks1 in regulating the G1-S transition.
doi:10.1128/MCB.06771-11
PMCID: PMC3434501  PMID: 22508990
2.  Skp2 directs Myc-mediated suppression of p27Kip1 yet has modest effects on Myc-driven lymphomagenesis 
Molecular cancer research : MCR  2010;8(3):353-362.
The universal cyclin-Cdk inhibitor p27Kip1 functions as a tumor suppressor and reduced levels of p27Kip1 connote poor prognosis in several human malignancies. p27Kip1 levels are predominately regulated by ubiquitin-mediated turnover of the protein, which is marked for destruction by the E3 ubiquitin ligase SCFSkp2 complex following its phosphorylation by the cyclin E-Cdk2 complex. Binding of phospho-p27Kip1 is directed by the Skp2 F-box protein, and this is greatly augmented by its allosteric regulator Cks1. We have established that programmed expression of c-Myc in the B cells of Eμ-Myc transgenic mice triggers p27Kip1 destruction by inducing Cks1, that this response controls Myc-driven proliferation, and that loss of Cks1 markedly delays Myc-induced lymphomagenesis and cancels the dissemination of these tumors. Here, we report that elevated levels of Skp2 are a characteristic of Eμ-Myc lymphomas and of human Burkitt lymphoma that bear MYC/immunoglobulin chromosomal translocations. As expected, Myc-mediated suppression of p27Kip1 was abolished in Skp2-null Eμ-Myc B cells. However, the impact of Skp2 loss on Myc-driven proliferation and lymphomagenesis was surprisingly modest compared to the effects of Cks1 loss. Collectively these findings suggest that Cks1 targets in addition to p27Kip1 are critical for Myc-driven proliferation and tumorigenesis.
doi:10.1158/1541-7786.MCR-09-0232
PMCID: PMC3095030  PMID: 20197382
Myc; Skp2; p27Kip1; lymphomagenesis

Results 1-2 (2)