PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Collagen XVI Induces Expression of MMP9 via Modulation of AP-1 Transcription Factors and Facilitates Invasion of Oral Squamous Cell Carcinoma 
PLoS ONE  2014;9(1):e86777.
Collagen XVI belongs to the family of fibril-associated collagens with interrupted triple helices (FACIT). It is overexpressed during the progression of oral squamous cell carcinoma (OSCC). The present data show a strong collagen XVI-dependent induction of MMP9 and an increase in OSCC cell invasion. We found activated integrin-linked kinase (ILK) in a complex with kindlin-1 and activation of protein kinase B (PKB/Akt) to be responsible for MMP9 induction. Inhibition of the formation of focal adhesions reduced MMP9 expression. Moreover, collagen XVI overexpressing OSCC cell clones (COLXVI cell clones) transfected with vectors containing different MMP9 promoter fragments adjacent to a luciferase reporter revealed an increase in luciferase signal dependent on AP-1 binding sites. Deletion of the AP-1 binding site 98 bp upstream of the reported transcription start site and inhibition of AP-1 with Tanshinone IIA resulted in decreased MMP9 expression. The AP-1 subunit JunB showed differential expression between COLXVI cell clones and mock control cells. Additionally, mass spectrometric analysis of immunoprecipitates revealed that c-Fos interacted strongly with dyskerin in COLXVI cell clones compared to mock controls.
doi:10.1371/journal.pone.0086777
PMCID: PMC3900656  PMID: 24466237
2.  The oncofetal gene survivin is re-expressed in osteoarthritis and is required for chondrocyte proliferation in vitro 
Background
Regulation of cell death and cell division are key processes during chondrogenesis and in cartilage homeostasis and pathology. The oncogene survivin is considered to be critical for the coordination of mitosis and maintenance of cell viability during embryonic development and in cancer, and is not detectable in most adult differentiated tissues and cells. We analyzed survivin expression in osteoarthritic cartilage and its function in primary human chondrocytes in vitro.
Methods
Survivin expression was analyzed by immunoblotting and quantitative real-time PCR. The localization was visualized by immunofluorescence. Survivin functions in vitro were investigated by transfection of a specific siRNA.
Results
Survivin was expressed in human osteoarthritic cartilage, but was not detectable in macroscopically and microscopically unaffected cartilage of osteoarthritic knee joints. In primary human chondrocyte cultures, survivin was localized to heterogeneous subcellular compartments. Suppression of survivin resulted in inhibition of cell cycle progression and sensitization toward apoptotic stimuli in vitro.
Conclusions
The present study indicates a role for survivin in osteoarthritic cartilage and human chondrocytes. In vitro experiments indicated its involvement in cellular division and viability. Learning more about the functions of survivin in chondrocyte biology might further help toward understanding and modulating the complex processes of cartilage pathology and regeneration.
doi:10.1186/1471-2474-12-150
PMCID: PMC3141611  PMID: 21729321
apoptosis; chondrocyte; osteoarthritis; proliferation; survivin
3.  Tumor necrosis factor and norepinephrine lower the levels of human neutrophil peptides 1-3 secretion by mixed synovial tissue cultures in osteoarthritis and rheumatoid arthritis 
Arthritis Research & Therapy  2010;12(3):R110.
Introduction
Neutrophils and monocytes play an important role in overt inflammation in chronic inflammatory joint diseases such as rheumatoid arthritis (RA). The sympathetic nervous system (SNS) inhibits many neutrophil/monocyte functions and macrophage tumor necrosis factor (TNF), but because of the loss of sympathetic nerve fibers in inflamed tissue, sympathetic control is attenuated. In this study, we focused on noradrenergic and TNF regulation of human neutrophil peptides 1-3 (HNP1-3), which are proinflammatory bactericidal α-defensins.
Methods
Synovial tissue and cells were obtained from patients with RA and osteoarthritis (OA). By using immunohistochemistry and immunofluorescence, HNP1-3 were tracked in the tissue. With synovial cell-culture experiments and ELISA, effects of norepinephrine, TNF, and cortisol on HNP1-3 were detected.
Results
HNP1-3 were abundantly expressed in the synovial lining and adjacent sublining area but not in deeper layers of synovial tissue. The human β-defensin-2, used as control, was hardly detectable in the tissue and in supernatants. HNP1-3 double-stained with neutrophils but not with macrophages, fibroblasts, T/B lymphocytes, and mast cells. Norepinephrine dose-dependently decreased HNP1-3 levels from RA and OA cells. TNF also inhibited HNP1-3 levels from OA but not from RA cells. Cortisol inhibited HNP1-3 levels only in OA patients. A combination of norepinephrine and cortisol did not show additive or synergistic effects.
Conclusions
This study demonstrated an inhibitory effect of norepinephrine on HNP1-3 of mixed synovial cells. In light of these findings, the loss of sympathetic nerve fibers with low resting norepinephrine levels might also augment the inflammatory process through HNP1-3.
doi:10.1186/ar3044
PMCID: PMC2911901  PMID: 20525314
4.  Modulation of cartilage differentiation by melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) 
Experimental & Molecular Medicine  2010;42(3):166-174.
Melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from malignant melanoma cells and from chondrocytes. Recently, we revealed that MIA/CD-RAP can modulate bone morphogenetic protein (BMP)2-induced osteogenic differentiation into a chondrogenic direction. In the current study we aimed to find the molecular details of this MIA/CD-RAP function. Direct influence of MIA on BMP2 by protein-protein-interaction or modulating SMAD signaling was ruled out experimentally. Instead, we revealed inhibition of ERK signaling by MIA/CD-RAP. This inhibition is regulated via binding of MIA/CD-RAP to integrin α5 and abolishing its activity. Active ERK signaling is known to block chondrogenic differentiation and we revealed induction of aggrecan expression in chondrocytes by treatment with MIA/CD-RAP or PD098059, an ERK inhibitor. In in vivo models we could support the role of MIA/CD-RAP in influencing osteogenic differentiation negatively. Further, MIA/CD-RAP-deficient mice revealed an enhanced calcified cartilage layer of the articular cartilage of the knee joint and disordered arrangement of chondrocytes. Taken together, our data indicate that MIA/CD-RAP stabilizes cartilage differentiation and inhibits differentiation into bone potentially by regulating signaling processes during differentiation.
doi:10.3858/emm.2010.42.3.017
PMCID: PMC2845001  PMID: 20164682
Bone morphogenetic protein 2; cartilage; cell differentiation; chondrocytes; MIA protein, human
5.  Altered Integration of Matrilin-3 into Cartilage Extracellular Matrix in the Absence of Collagen IX 
Molecular and Cellular Biology  2005;25(23):10465-10478.
The matrilins are a family of four noncollagenous oligomeric extracellular matrix proteins with a modular structure. Matrilins can act as adapters which bridge different macromolecular networks. We therefore investigated the effect of collagen IX deficiency on matrilin-3 integration into cartilage tissues. Mice harboring a deleted Col9a1 gene lack synthesis of a functional protein and produce cartilage fibrils completely devoid of collagen IX. Newborn collagen IX knockout mice exhibited significantly decreased matrilin-3 and cartilage oligomeric matrix protein (COMP) signals, particularly in the cartilage primordium of vertebral bodies and ribs. In the absence of collagen IX, a substantial amount of matrilin-3 is released into the medium of cultured chondrocytes instead of being integrated into the cell layer as in wild-type and COMP-deficient cells. Gene expression of matrilin-3 is not affected in the absence of collagen IX, but protein extraction from cartilage is greatly facilitated. Matrilin-3 interacts with collagen IX-containing cartilage fibrils, while fibrils from collagen IX knockout mice lack matrilin-3, and COMP-deficient fibrils exhibit an intermediate integration. In summary, the integration of matrilin-3 into cartilage fibrils occurs both by a direct interaction with collagen IX and indirectly with COMP serving as an adapter. Matrilin-3 can be considered as an interface component, capable of interconnecting macromolecular networks and mediating interactions between cartilage fibrils and the extrafibrillar matrix.
doi:10.1128/MCB.25.23.10465-10478.2005
PMCID: PMC1291247  PMID: 16287859

Results 1-5 (5)