PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. 
Journal of Bacteriology  1997;179(19):6122-6126.
Escherichia coli K-12 strains are normally tolerant to n-hexane and susceptible to cyclohexane. Constitutive expression of marA of the multiple antibiotic resistance (mar) locus or of the soxS or robA gene product produced tolerance to cyclohexane. Inactivation of the mar locus or the robA locus, but not the soxRS locus, increased organic solvent susceptibility in the wild type and Mar mutants (to both n-hexane and cyclohexane). The organic solvent hypersusceptibility is a newly described phenotype for a robA-inactivated strain. Multicopy expression of mar, soxS, or robA induced cyclohexane tolerance in strains with a deleted or inactivated chromosomal mar, soxRS, or robA locus; thus, each transcriptional activator acts independently of the others. However, in a strain with 39 kb of chromosomal DNA, including the mar locus, deleted, only the multicopy complete mar locus, consisting of its two operons, produced cyclohexane tolerance. Deletion of acrAB from either wild-type E. coli K-12 or a Mar mutant resulted in loss of tolerance to both n-hexane and cyclohexane. Organic solvent tolerance mediated by mar, soxS, or robA was not restored in strains with acrAB deleted. These findings strongly suggest that active efflux specified by the acrAB locus is linked to intrinsic organic solvent tolerance and to tolerance mediated by the marA, soxS, or robA gene product in E. coli.
PMCID: PMC179517  PMID: 9324261
2.  Multiple antibiotic resistance (mar) locus protects Escherichia coli from rapid cell killing by fluoroquinolones. 
The multiple antibiotic resistance (mar) locus in Escherichia coli consists of two divergently expressed operons (marC and marRAB), both of which contribute to the Mar phenotype. Overexpression of the marRAB operon protected E. coli against rapid cell killing by fluoroquinolones. Inactivation of the operon in mar mutants restored a wild-type bactericidal susceptibility. Both operons of the locus were required for protection from the quinolone-mediated bactericidal activity in mar locus deletion mutants. The effect was lost at high concentrations of fluoroquinolones, unlike the case for the previously described genes hipA and hipQ. The inducible mar locus appears to specify a novel antibactericidal mechanism which may play a role in the emergence of fluoroquinolone-resistant clinical E. coli isolates.
PMCID: PMC163305  PMID: 8723480

Results 1-2 (2)