PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Ferroelectric control of a Mott insulator 
Scientific Reports  2013;3:2834.
The electric field control of functional properties is an important goal in oxide-based electronics. To endow devices with memory, ferroelectric gating is interesting, but usually weak compared to volatile electrolyte gating. Here, we report a very large ferroelectric field-effect in perovskite heterostructures combining the Mott insulator CaMnO3 and the ferroelectric BiFeO3 in its “supertetragonal” phase. Upon polarization reversal of the BiFeO3 gate, the CaMnO3 channel resistance shows a fourfold variation around room temperature, and a tenfold change at ~200 K. This is accompanied by a carrier density modulation exceeding one order of magnitude. We have analyzed the results for various CaMnO3 thicknesses and explain them by the electrostatic doping of the CaMnO3 layer and the presence of a fixed dipole at the CaMnO3/BiFeO3 interface. Our results suggest the relevance of ferroelectric gates to control orbital- or spin-ordered phases, ubiquitous in Mott systems, and pave the way toward efficient Mott-tronics devices.
doi:10.1038/srep02834
PMCID: PMC3789157  PMID: 24089020
2.  Nanoscale chemical and structural study of Co-based FEBID structures by STEM-EELS and HRTEM 
Nanoscale Research Letters  2011;6(1):592.
Nanolithography techniques in a scanning electron microscope/focused ion beam are very attractive tools for a number of synthetic processes, including the fabrication of ferromagnetic nano-objects, with potential applications in magnetic storage or magnetic sensing. One of the most versatile techniques is the focused electron beam induced deposition, an efficient method for the production of magnetic structures highly resolved at the nanometric scale. In this work, this method has been applied to the controlled growth of magnetic nanostructures using Co2(CO)8. The chemical and structural properties of these deposits have been studied by electron energy loss spectroscopy and high-resolution transmission electron microscopy at the nanometric scale. The obtained results allow us to correlate the chemical and structural properties with the functionality of these magnetic nanostructures.
doi:10.1186/1556-276X-6-592
PMCID: PMC3237113  PMID: 22085532
Co deposits; FEBID; EELS; HRTEM

Results 1-2 (2)