PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (100)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) 
Klionsky, Daniel J | Abdelmohsen, Kotb | Abe, Akihisa | Abedin, Md Joynal | Abeliovich, Hagai | Acevedo Arozena, Abraham | Adachi, Hiroaki | Adams, Christopher M | Adams, Peter D | Adeli, Khosrow | Adhihetty, Peter J | Adler, Sharon G | Agam, Galila | Agarwal, Rajesh | Aghi, Manish K | Agnello, Maria | Agostinis, Patrizia | Aguilar, Patricia V | Aguirre-Ghiso, Julio | Airoldi, Edoardo M | Ait-Si-Ali, Slimane | Akematsu, Takahiko | Akporiaye, Emmanuel T | Al-Rubeai, Mohamed | Albaiceta, Guillermo M | Albanese, Chris | Albani, Diego | Albert, Matthew L | Aldudo, Jesus | Algül, Hana | Alirezaei, Mehrdad | Alloza, Iraide | Almasan, Alexandru | Almonte-Beceril, Maylin | Alnemri, Emad S | Alonso, Covadonga | Altan-Bonnet, Nihal | Altieri, Dario C | Alvarez, Silvia | Alvarez-Erviti, Lydia | Alves, Sandro | Amadoro, Giuseppina | Amano, Atsuo | Amantini, Consuelo | Ambrosio, Santiago | Amelio, Ivano | Amer, Amal O | Amessou, Mohamed | Amon, Angelika | An, Zhenyi | Anania, Frank A | Andersen, Stig U | Andley, Usha P | Andreadi, Catherine K | Andrieu-Abadie, Nathalie | Anel, Alberto | Ann, David K | Anoopkumar-Dukie, Shailendra | Antonioli, Manuela | Aoki, Hiroshi | Apostolova, Nadezda | Aquila, Saveria | Aquilano, Katia | Araki, Koichi | Arama, Eli | Aranda, Agustin | Araya, Jun | Arcaro, Alexandre | Arias, Esperanza | Arimoto, Hirokazu | Ariosa, Aileen R | Armstrong, Jane L | Arnould, Thierry | Arsov, Ivica | Asanuma, Katsuhiko | Askanas, Valerie | Asselin, Eric | Atarashi, Ryuichiro | Atherton, Sally S | Atkin, Julie D | Attardi, Laura D | Auberger, Patrick | Auburger, Georg | Aurelian, Laure | Autelli, Riccardo | Avagliano, Laura | Avantaggiati, Maria Laura | Avrahami, Limor | Awale, Suresh | Azad, Neelam | Bachetti, Tiziana | Backer, Jonathan M | Bae, Dong-Hun | Bae, Jae-sung | Bae, Ok-Nam | Bae, Soo Han | Baehrecke, Eric H | Baek, Seung-Hoon | Baghdiguian, Stephen | Bagniewska-Zadworna, Agnieszka | Bai, Hua | Bai, Jie | Bai, Xue-Yuan | Bailly, Yannick | Balaji, Kithiganahalli Narayanaswamy | Balduini, Walter | Ballabio, Andrea | Balzan, Rena | Banerjee, Rajkumar | Bánhegyi, Gábor | Bao, Haijun | Barbeau, Benoit | Barrachina, Maria D | Barreiro, Esther | Bartel, Bonnie | Bartolomé, Alberto | Bassham, Diane C | Bassi, Maria Teresa | Bast, Robert C | Basu, Alakananda | Batista, Maria Teresa | Batoko, Henri | Battino, Maurizio | Bauckman, Kyle | Baumgarner, Bradley L | Bayer, K Ulrich | Beale, Rupert | Beaulieu, Jean-François | Beck, George R. | Becker, Christoph | Beckham, J David | Bédard, Pierre-André | Bednarski, Patrick J | Begley, Thomas J | Behl, Christian | Behrends, Christian | Behrens, Georg MN | Behrns, Kevin E | Bejarano, Eloy | Belaid, Amine | Belleudi, Francesca | Bénard, Giovanni | Berchem, Guy | Bergamaschi, Daniele | Bergami, Matteo | Berkhout, Ben | Berliocchi, Laura | Bernard, Amélie | Bernard, Monique | Bernassola, Francesca | Bertolotti, Anne | Bess, Amanda S | Besteiro, Sébastien | Bettuzzi, Saverio | Bhalla, Savita | Bhattacharyya, Shalmoli | Bhutia, Sujit K | Biagosch, Caroline | Bianchi, Michele Wolfe | Biard-Piechaczyk, Martine | Billes, Viktor | Bincoletto, Claudia | Bingol, Baris | Bird, Sara W | Bitoun, Marc | Bjedov, Ivana | Blackstone, Craig | Blanc, Lionel | Blanco, Guillermo A | Blomhoff, Heidi Kiil | Boada-Romero, Emilio | Böckler, Stefan | Boes, Marianne | Boesze-Battaglia, Kathleen | Boise, Lawrence H | Bolino, Alessandra | Boman, Andrea | Bonaldo, Paolo | Bordi, Matteo | Bosch, Jürgen | Botana, Luis M | Botti, Joelle | Bou, German | Bouché, Marina | Bouchecareilh, Marion | Boucher, Marie-Josée | Boulton, Michael E | Bouret, Sebastien G | Boya, Patricia | Boyer-Guittaut, Michaël | Bozhkov, Peter V | Brady, Nathan | Braga, Vania MM | Brancolini, Claudio | Braus, Gerhard H | Bravo-San Pedro, José M | Brennan, Lisa A | Bresnick, Emery H | Brest, Patrick | Bridges, Dave | Bringer, Marie-Agnès | Brini, Marisa | Brito, Glauber C | Brodin, Bertha | Brookes, Paul S | Brown, Eric J | Brown, Karen | Broxmeyer, Hal E | Bruhat, Alain | Brum, Patricia Chakur | Brumell, John H | Brunetti-Pierri, Nicola | Bryson-Richardson, Robert J | Buch, Shilpa | Buchan, Alastair M | Budak, Hikmet | Bulavin, Dmitry V | Bultman, Scott J | Bultynck, Geert | Bumbasirevic, Vladimir | Burelle, Yan | Burke, Robert E | Burmeister, Margit | Bütikofer, Peter | Caberlotto, Laura | Cadwell, Ken | Cahova, Monika | Cai, Dongsheng | Cai, Jingjing | Cai, Qian | Calatayud, Sara | Camougrand, Nadine | Campanella, Michelangelo | Campbell, Grant R | Campbell, Matthew | Campello, Silvia | Candau, Robin | Caniggia, Isabella | Cantoni, Lavinia | Cao, Lizhi | Caplan, Allan B | Caraglia, Michele | Cardinali, Claudio | Cardoso, Sandra Morais | Carew, Jennifer S | Carleton, Laura A | Carlin, Cathleen R | Carloni, Silvia | Carlsson, Sven R | Carmona-Gutierrez, Didac | Carneiro, Leticia AM | Carnevali, Oliana | Carra, Serena | Carrier, Alice | Carroll, Bernadette | Casas, Caty | Casas, Josefina | Cassinelli, Giuliana | Castets, Perrine | Castro-Obregon, Susana | Cavallini, Gabriella | Ceccherini, Isabella | Cecconi, Francesco | Cederbaum, Arthur I | Ceña, Valentín | Cenci, Simone | Cerella, Claudia | Cervia, Davide | Cetrullo, Silvia | Chaachouay, Hassan | Chae, Han-Jung | Chagin, Andrei S | Chai, Chee-Yin | Chakrabarti, Gopal | Chamilos, Georgios | Chan, Edmond YW | Chan, Matthew TV | Chandra, Dhyan | Chandra, Pallavi | Chang, Chih-Peng | Chang, Raymond Chuen-Chung | Chang, Ta Yuan | Chatham, John C | Chatterjee, Saurabh | Chauhan, Santosh | Che, Yongsheng | Cheetham, Michael E | Cheluvappa, Rajkumar | Chen, Chun-Jung | Chen, Gang | Chen, Guang-Chao | Chen, Guoqiang | Chen, Hongzhuan | Chen, Jeff W | Chen, Jian-Kang | Chen, Min | Chen, Mingzhou | Chen, Peiwen | Chen, Qi | Chen, Quan | Chen, Shang-Der | Chen, Si | Chen, Steve S-L | Chen, Wei | Chen, Wei-Jung | Chen, Wen Qiang | Chen, Wenli | Chen, Xiangmei | Chen, Yau-Hung | Chen, Ye-Guang | Chen, Yin | Chen, Yingyu | Chen, Yongshun | Chen, Yu-Jen | Chen, Yue-Qin | Chen, Yujie | Chen, Zhen | Chen, Zhong | Cheng, Alan | Cheng, Christopher HK | Cheng, Hua | Cheong, Heesun | Cherry, Sara | Chesney, Jason | Cheung, Chun Hei Antonio | Chevet, Eric | Chi, Hsiang Cheng | Chi, Sung-Gil | Chiacchiera, Fulvio | Chiang, Hui-Ling | Chiarelli, Roberto | Chiariello, Mario | Chieppa, Marcello | Chin, Lih-Shen | Chiong, Mario | Chiu, Gigi NC | Cho, Dong-Hyung | Cho, Ssang-Goo | Cho, William C | Cho, Yong-Yeon | Cho, Young-Seok | Choi, Augustine MK | Choi, Eui-Ju | Choi, Eun-Kyoung | Choi, Jayoung | Choi, Mary E | Choi, Seung-Il | Chou, Tsui-Fen | Chouaib, Salem | Choubey, Divaker | Choubey, Vinay | Chow, Kuan-Chih | Chowdhury, Kamal | Chu, Charleen T | Chuang, Tsung-Hsien | Chun, Taehoon | Chung, Hyewon | Chung, Taijoon | Chung, Yuen-Li | Chwae, Yong-Joon | Cianfanelli, Valentina | Ciarcia, Roberto | Ciechomska, Iwona A | Ciriolo, Maria Rosa | Cirone, Mara | Claerhout, Sofie | Clague, Michael J | Clària, Joan | Clarke, Peter GH | Clarke, Robert | Clementi, Emilio | Cleyrat, Cédric | Cnop, Miriam | Coccia, Eliana M | Cocco, Tiziana | Codogno, Patrice | Coers, Jörn | Cohen, Ezra EW | Colecchia, David | Coletto, Luisa | Coll, Núria S | Colucci-Guyon, Emma | Comincini, Sergio | Condello, Maria | Cook, Katherine L | Coombs, Graham H | Cooper, Cynthia D | Cooper, J Mark | Coppens, Isabelle | Corasaniti, Maria Tiziana | Corazzari, Marco | Corbalan, Ramon | Corcelle-Termeau, Elisabeth | Cordero, Mario D | Corral-Ramos, Cristina | Corti, Olga | Cossarizza, Andrea | Costelli, Paola | Costes, Safia | Cotman, Susan L | Coto-Montes, Ana | Cottet, Sandra | Couve, Eduardo | Covey, Lori R | Cowart, L Ashley | Cox, Jeffery S | Coxon, Fraser P | Coyne, Carolyn B | Cragg, Mark S | Craven, Rolf J | Crepaldi, Tiziana | Crespo, Jose L | Criollo, Alfredo | Crippa, Valeria | Cruz, Maria Teresa | Cuervo, Ana Maria | Cuezva, Jose M | Cui, Taixing | Cutillas, Pedro R | Czaja, Mark J | Czyzyk-Krzeska, Maria F | Dagda, Ruben K | Dahmen, Uta | Dai, Chunsun | Dai, Wenjie | Dai, Yun | Dalby, Kevin N | Dalla Valle, Luisa | Dalmasso, Guillaume | D'Amelio, Marcello | Damme, Markus | Darfeuille-Michaud, Arlette | Dargemont, Catherine | Darley-Usmar, Victor M | Dasarathy, Srinivasan | Dasgupta, Biplab | Dash, Srikanta | Dass, Crispin R | Davey, Hazel Marie | Davids, Lester M | Dávila, David | Davis, Roger J | Dawson, Ted M | Dawson, Valina L | Daza, Paula | de Belleroche, Jackie | de Figueiredo, Paul | de Figueiredo, Regina Celia Bressan Queiroz | de la Fuente, José | De Martino, Luisa | De Matteis, Antonella | De Meyer, Guido RY | De Milito, Angelo | De Santi, Mauro | de Souza, Wanderley | De Tata, Vincenzo | De Zio, Daniela | Debnath, Jayanta | Dechant, Reinhard | Decuypere, Jean-Paul | Deegan, Shane | Dehay, Benjamin | Del Bello, Barbara | Del Re, Dominic P | Delage-Mourroux, Régis | Delbridge, Lea MD | Deldicque, Louise | Delorme-Axford, Elizabeth | Deng, Yizhen | Dengjel, Joern | Denizot, Melanie | Dent, Paul | Der, Channing J | Deretic, Vojo | Derrien, Benoît | Deutsch, Eric | Devarenne, Timothy P | Devenish, Rodney J | Di Bartolomeo, Sabrina | Di Daniele, Nicola | Di Domenico, Fabio | Di Nardo, Alessia | Di Paola, Simone | Di Pietro, Antonio | Di Renzo, Livia | DiAntonio, Aaron | Díaz-Araya, Guillermo | Díaz-Laviada, Ines | Diaz-Meco, Maria T | Diaz-Nido, Javier | Dickey, Chad A | Dickson, Robert C | Diederich, Marc | Digard, Paul | Dikic, Ivan | Dinesh-Kumar, Savithrama P | Ding, Chan | Ding, Wen-Xing | Ding, Zufeng | Dini, Luciana | Distler, Jörg HW | Diwan, Abhinav | Djavaheri-Mergny, Mojgan | Dmytruk, Kostyantyn | Dobson, Renwick CJ | Doetsch, Volker | Dokladny, Karol | Dokudovskaya, Svetlana | Donadelli, Massimo | Dong, X Charlie | Dong, Xiaonan | Dong, Zheng | Donohue, Terrence M | Doran, Kelly S | D'Orazi, Gabriella | Dorn, Gerald W | Dosenko, Victor | Dridi, Sami | Drucker, Liat | Du, Jie | Du, Li-Lin | Du, Lihuan | du Toit, André | Dua, Priyamvada | Duan, Lei | Duann, Pu | Dubey, Vikash Kumar | Duchen, Michael R | Duchosal, Michel A | Duez, Helene | Dugail, Isabelle | Dumit, Verónica I | Duncan, Mara C | Dunlop, Elaine A | Dunn, William A | Dupont, Nicolas | Dupuis, Luc | Durán, Raúl V | Durcan, Thomas M | Duvezin-Caubet, Stéphane | Duvvuri, Umamaheswar | Eapen, Vinay | Ebrahimi-Fakhari, Darius | Echard, Arnaud | Eckhart, Leopold | Edelstein, Charles L | Edinger, Aimee L | Eichinger, Ludwig | Eisenberg, Tobias | Eisenberg-Lerner, Avital | Eissa, N Tony | El-Deiry, Wafik S | El-Khoury, Victoria | Elazar, Zvulun | Eldar-Finkelman, Hagit | Elliott, Chris JH | Emanuele, Enzo | Emmenegger, Urban | Engedal, Nikolai | Engelbrecht, Anna-Mart | Engelender, Simone | Enserink, Jorrit M | Erdmann, Ralf | Erenpreisa, Jekaterina | Eri, Rajaraman | Eriksen, Jason L | Erman, Andreja | Escalante, Ricardo | Eskelinen, Eeva-Liisa | Espert, Lucile | Esteban-Martínez, Lorena | Evans, Thomas J | Fabri, Mario | Fabrias, Gemma | Fabrizi, Cinzia | Facchiano, Antonio | Færgeman, Nils J | Faggioni, Alberto | Fairlie, W Douglas | Fan, Chunhai | Fan, Daping | Fan, Jie | Fang, Shengyun | Fanto, Manolis | Fanzani, Alessandro | Farkas, Thomas | Faure, Mathias | Favier, Francois B | Fearnhead, Howard | Federici, Massimo | Fei, Erkang | Felizardo, Tania C | Feng, Hua | Feng, Yibin | Feng, Yuchen | Ferguson, Thomas A | Fernández, Álvaro F | Fernandez-Barrena, Maite G | Fernandez-Checa, Jose C | Fernández-López, Arsenio | Fernandez-Zapico, Martin E | Feron, Olivier | Ferraro, Elisabetta | Ferreira-Halder, Carmen Veríssima | Fesus, Laszlo | Feuer, Ralph | Fiesel, Fabienne C | Filippi-Chiela, Eduardo C | Filomeni, Giuseppe | Fimia, Gian Maria | Fingert, John H | Finkbeiner, Steven | Finkel, Toren | Fiorito, Filomena | Fisher, Paul B | Flajolet, Marc | Flamigni, Flavio | Florey, Oliver | Florio, Salvatore | Floto, R Andres | Folini, Marco | Follo, Carlo | Fon, Edward A | Fornai, Francesco | Fortunato, Franco | Fraldi, Alessandro | Franco, Rodrigo | Francois, Arnaud | François, Aurélie | Frankel, Lisa B | Fraser, Iain DC | Frey, Norbert | Freyssenet, Damien G | Frezza, Christian | Friedman, Scott L | Frigo, Daniel E | Fu, Dongxu | Fuentes, José M | Fueyo, Juan | Fujitani, Yoshio | Fujiwara, Yuuki | Fujiya, Mikihiro | Fukuda, Mitsunori | Fulda, Simone | Fusco, Carmela | Gabryel, Bozena | Gaestel, Matthias | Gailly, Philippe | Gajewska, Malgorzata | Galadari, Sehamuddin | Galili, Gad | Galindo, Inmaculada | Galindo, Maria F | Galliciotti, Giovanna | Galluzzi, Lorenzo | Galluzzi, Luca | Galy, Vincent | Gammoh, Noor | Gandy, Sam | Ganesan, Anand K | Ganesan, Swamynathan | Ganley, Ian G | Gannagé, Monique | Gao, Fen-Biao | Gao, Feng | Gao, Jian-Xin | García Nannig, Lorena | García Véscovi, Eleonora | Garcia-Macía, Marina | Garcia-Ruiz, Carmen | Garg, Abhishek D | Garg, Pramod Kumar | Gargini, Ricardo | Gassen, Nils Christian | Gatica, Damián | Gatti, Evelina | Gavard, Julie | Gavathiotis, Evripidis | Ge, Liang | Ge, Pengfei | Ge, Shengfang | Gean, Po-Wu | Gelmetti, Vania | Genazzani, Armando A | Geng, Jiefei | Genschik, Pascal | Gerner, Lisa | Gestwicki, Jason E | Gewirtz, David A | Ghavami, Saeid | Ghigo, Eric | Ghosh, Debabrata | Giammarioli, Anna Maria | Giampieri, Francesca | Giampietri, Claudia | Giatromanolaki, Alexandra | Gibbings, Derrick J | Gibellini, Lara | Gibson, Spencer B | Ginet, Vanessa | Giordano, Antonio | Giorgini, Flaviano | Giovannetti, Elisa | Girardin, Stephen E | Gispert, Suzana | Giuliano, Sandy | Gladson, Candece L | Glavic, Alvaro | Gleave, Martin | Godefroy, Nelly | Gogal, Robert M | Gokulan, Kuppan | Goldman, Gustavo H | Goletti, Delia | Goligorsky, Michael S | Gomes, Aldrin V | Gomes, Ligia C | Gomez, Hernando | Gomez-Manzano, Candelaria | Gómez-Sánchez, Rubén | Gonçalves, Dawit AP | Goncu, Ebru | Gong, Qingqiu | Gongora, Céline | Gonzalez, Carlos B | Gonzalez-Alegre, Pedro | Gonzalez-Cabo, Pilar | González-Polo, Rosa Ana | Goping, Ing Swie | Gorbea, Carlos | Gorbunov, Nikolai V | Goring, Daphne R | Gorman, Adrienne M | Gorski, Sharon M | Goruppi, Sandro | Goto-Yamada, Shino | Gotor, Cecilia | Gottlieb, Roberta A | Gozes, Illana | Gozuacik, Devrim | Graba, Yacine | Graef, Martin | Granato, Giovanna E | Grant, Gary Dean | Grant, Steven | Gravina, Giovanni Luca | Green, Douglas R | Greenhough, Alexander | Greenwood, Michael T | Grimaldi, Benedetto | Gros, Frédéric | Grose, Charles | Groulx, Jean-Francois | Gruber, Florian | Grumati, Paolo | Grune, Tilman | Guan, Jun-Lin | Guan, Kun-Liang | Guerra, Barbara | Guillen, Carlos | Gulshan, Kailash | Gunst, Jan | Guo, Chuanyong | Guo, Lei | Guo, Ming | Guo, Wenjie | Guo, Xu-Guang | Gust, Andrea A | Gustafsson, Åsa B | Gutierrez, Elaine | Gutierrez, Maximiliano G | Gwak, Ho-Shin | Haas, Albert | Haber, James E | Hadano, Shinji | Hagedorn, Monica | Hahn, David R | Halayko, Andrew J | Hamacher-Brady, Anne | Hamada, Kozo | Hamai, Ahmed | Hamann, Andrea | Hamasaki, Maho | Hamer, Isabelle | Hamid, Qutayba | Hammond, Ester M | Han, Feng | Han, Weidong | Handa, James T | Hanover, John A | Hansen, Malene | Harada, Masaru | Harhaji-Trajkovic, Ljubica | Harper, J Wade | Harrath, Abdel Halim | Harris, Adrian L | Harris, James | Hasler, Udo | Hasselblatt, Peter | Hasui, Kazuhisa | Hawley, Robert G | Hawley, Teresa S | He, Congcong | He, Cynthia Y | He, Fengtian | He, Gu | He, Rong-Rong | He, Xian-Hui | He, You-Wen | He, Yu-Ying | Heath, Joan K | Hébert, Marie-Josée | Heinzen, Robert A | Helgason, Gudmundur Vignir | Hensel, Michael | Henske, Elizabeth P | Her, Chengtao | Herman, Paul K | Hernández, Agustín | Hernandez, Carlos | Hernández-Tiedra, Sonia | Hetz, Claudio | Hiesinger, P Robin | Higaki, Katsumi | Hilfiker, Sabine | Hill, Bradford G | Hill, Joseph A | Hill, William D | Hino, Keisuke | Hofius, Daniel | Hofman, Paul | Höglinger, Günter U | Höhfeld, Jörg | Holz, Marina K | Hong, Yonggeun | Hood, David A | Hoozemans, Jeroen JM | Hoppe, Thorsten | Hsu, Chin | Hsu, Chin-Yuan | Hsu, Li-Chung | Hu, Dong | Hu, Guochang | Hu, Hong-Ming | Hu, Hongbo | Hu, Ming Chang | Hu, Yu-Chen | Hu, Zhuo-Wei | Hua, Fang | Hua, Ya | Huang, Canhua | Huang, Huey-Lan | Huang, Kuo-How | Huang, Kuo-Yang | Huang, Shile | Huang, Shiqian | Huang, Wei-Pang | Huang, Yi-Ran | Huang, Yong | Huang, Yunfei | Huber, Tobias B | Huebbe, Patricia | Huh, Won-Ki | Hulmi, Juha J | Hur, Gang Min | Hurley, James H | Husak, Zvenyslava | Hussain, Sabah NA | Hussain, Salik | Hwang, Jung Jin | Hwang, Seungmin | Hwang, Thomas IS | Ichihara, Atsuhiro | Imai, Yuzuru | Imbriano, Carol | Inomata, Megumi | Into, Takeshi | Iovane, Valentina | Iovanna, Juan L | Iozzo, Renato V | Ip, Nancy Y | Irazoqui, Javier E | Iribarren, Pablo | Isaka, Yoshitaka | Isakovic, Aleksandra J | Ischiropoulos, Harry | Isenberg, Jeffrey S | Ishaq, Mohammad | Ishida, Hiroyuki | Ishii, Isao | Ishmael, Jane E | Isidoro, Ciro | Isobe, Ken-ichi | Isono, Erika | Issazadeh-Navikas, Shohreh | Itahana, Koji | Itakura, Eisuke | Ivanov, Andrei I | Iyer, Anand Krishnan V | Izquierdo, José M | Izumi, Yotaro | Izzo, Valentina | Jäättelä, Marja | Jaber, Nadia | Jackson, Daniel John | Jackson, William T | Jacob, Tony George | Jacques, Thomas S | Jagannath, Chinnaswamy | Jain, Ashish | Jana, Nihar Ranjan | Jang, Byoung Kuk | Jani, Alkesh | Janji, Bassam | Jannig, Paulo Roberto | Jansson, Patric J | Jean, Steve | Jendrach, Marina | Jeon, Ju-Hong | Jessen, Niels | Jeung, Eui-Bae | Jia, Kailiang | Jia, Lijun | Jiang, Hong | Jiang, Hongchi | Jiang, Liwen | Jiang, Teng | Jiang, Xiaoyan | Jiang, Xuejun | Jiang, Xuejun | Jiang, Ying | Jiang, Yongjun | Jiménez, Alberto | Jin, Cheng | Jin, Hongchuan | Jin, Lei | Jin, Meiyan | Jin, Shengkan | Jinwal, Umesh Kumar | Jo, Eun-Kyeong | Johansen, Terje | Johnson, Daniel E | Johnson, Gail VW | Johnson, James D | Jonasch, Eric | Jones, Chris | Joosten, Leo AB | Jordan, Joaquin | Joseph, Anna-Maria | Joseph, Bertrand | Joubert, Annie M | Ju, Dianwen | Ju, Jingfang | Juan, Hsueh-Fen | Juenemann, Katrin | Juhász, Gábor | Jung, Hye Seung | Jung, Jae U | Jung, Yong-Keun | Jungbluth, Heinz | Justice, Matthew J | Jutten, Barry | Kaakoush, Nadeem O | Kaarniranta, Kai | Kaasik, Allen | Kabuta, Tomohiro | Kaeffer, Bertrand | Kågedal, Katarina | Kahana, Alon | Kajimura, Shingo | Kakhlon, Or | Kalia, Manjula | Kalvakolanu, Dhan V | Kamada, Yoshiaki | Kambas, Konstantinos | Kaminskyy, Vitaliy O | Kampinga, Harm H | Kandouz, Mustapha | Kang, Chanhee | Kang, Rui | Kang, Tae-Cheon | Kanki, Tomotake | Kanneganti, Thirumala-Devi | Kanno, Haruo | Kanthasamy, Anumantha G | Kantorow, Marc | Kaparakis-Liaskos, Maria | Kapuy, Orsolya | Karantza, Vassiliki | Karim, Md Razaul | Karmakar, Parimal | Kaser, Arthur | Kaushik, Susmita | Kawula, Thomas | Kaynar, A Murat | Ke, Po-Yuan | Ke, Zun-Ji | Kehrl, John H | Keller, Kate E | Kemper, Jongsook Kim
Autophagy  2016;12(1):1-222.
doi:10.1080/15548627.2015.1100356
PMCID: PMC4835977  PMID: 26799652
autolysosome; autophagosome; chaperone-mediated autophagy; flux; LC3; lysosome; macroautophagy; phagophore; stress; vacuole
2.  Overview of CDK9 as a target in cancer research 
Cell Cycle  2016;15(4):519-527.
ABSTRACT
CDK9 is a protein in constant development in cancer therapy. Herein we present an overview of the enzyme as a target for cancer therapy. We provide data on its characteristics and mechanism of action. In recent years, CDK9 inhibitors that have been designed with molecular modeling have demonstrated good antitumoral activity in vitro. Clinical studies of the drugs flavopiridol, dinaciclib, seliciclib, SNS-032 and RGB-286638 used as CDK9 inhibitors are also reviewed, with their additional targets and their relative IC50 values. Unfortunately, treatment with these drugs remains unsuccessful and involves many adverse effects. We could conclude that there are many small molecules that bind to CDK9, but their lack of selectivity against other CDKs do not allow them to get to the clinical use. However, drug designers currently have the tools needed to improve the selectivity of CDK9 inhibitors and to make successful treatment available to patients.
doi:10.1080/15384101.2016.1138186
PMCID: PMC5056610  PMID: 26766294
CDK9; molecular modeling; antitumor; anticancer; drug development; cyclin; kinase
3.  Absence of germline CDKN2A mutation in Sicilian patients with familial malignant melanoma: Could it be a population-specific genetic signature? 
Cancer Biology & Therapy  2015;17(1):83-90.
ABSTRACT
Germline CDKN2A mutations have been described in 25% to 40% of melanoma families from several countries. Sicilian population is genetically different from the people of Europe and Northern Italy because of its historical background, therefore familial melanoma could be due to genes different from high-penetrance CDKN2A gene. Four hundred patients with cutaneous melanoma were observed in a 6-years period at the Plastic Surgery Unit of the University of Palermo. Forty-eight patients have met the criteria of the Italian Society of Human Genetics (SIGU) for the diagnosis of familial melanoma and were screened for CDKN2A and CDK4 mutations. Mutation testing revealed that none of the families carried mutations in CDK4 and only one patient harboured the rare CDKN2A p.R87W mutation. Unlike other studies, we have not found high mutation rate of CDKN2A in patients affected by familial melanoma or multiple melanoma. This difference could be attributed to different factors, including the genetic heterogeneity of the Sicilian population. It is likely that, as in the Australian people, the inheritance of familial melanoma in this island of the Mediterranean Sea is due to intermediate/low-penetrance susceptibility genes, which, together with environmental factors (as latitude and sun exposure), could determine the occurrence of melanoma.
doi:10.1080/15384047.2015.1108494
PMCID: PMC4847825  PMID: 26650572
CDKN2A; cutaneous melanoma; familial melanoma; germline mutation; p14ARF; p16INK4a; p.R87W mutation
4.  Neoadjuvant Sequential Docetaxel Followed by High‐Dose Epirubicin in Combination With Cyclophosphamide Administered Concurrently With Trastuzumab. The DECT Trial 
Journal of Cellular Physiology  2016;231(11):2541-2547.
To report the results of the DECT trial, a phase II study of locally advanced or operable HER2‐positive breast cancer (BC) treated with taxanes and concurrent anthracyclines and trastuzumab. Eligible patients (stage IIA‐IIIB HER2‐positive BC, 18–75 years, normal organ functions, ECOG ≤1, and left ventricular ejection fraction (LVEF) ≥55%) received four cycles of neoadjuvant docetaxel, 100 mg/m2 intravenously, plus trastuzumab 6 mg/kg (loading dose 8 mg/kg) every 3 weeks, followed by four 3‐weekly cycles of epirubicin 120 mg/m2 and cyclophosphamide, 600 mg/m2, plus trastuzumab. Primary objective was pathologic complete response (pCR) rate, defined as ypT0/is ypN0 at definitive surgery. We enrolled 45 consecutive patients. All but six patients (13.3%) completed chemotherapy and all underwent surgery. pCR was observed in 28 patients (62.2%) overall and in 6 (66.7%) from the inflammatory subgroup. The classification and regression tree analysis showed a 100% pCR rate in patients with BMI ≥25 and with hormone negative disease. The median follow up was 46 months (8–78). Four‐year recurrence‐free survival was 74.7% (95%CI, 58.2–91.2). Seven patients (15.6%) recurred and one died. Treatment was well tolerated, with limiting toxicity being neutropenia. No clinical cardiotoxicity was observed. Six patients (13.4%) showed a transient LVEF decrease (<10%). In one patient we observed a ≥10% asymptomatic LVEF decrease persisting after surgery. Notwithstanding their limited applicability due to the current guidelines, our findings support the efficacy of the regimen of interest in the neoadjuvant setting along with a fairly acceptable toxicity profile, including cardiotoxicity. Results on BMI may invite further assessment in future studies. J. Cell. Physiol. 231: 2541–2547, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
doi:10.1002/jcp.25432
PMCID: PMC5089631  PMID: 27187274
6.  Pharmacometabolomics study identifies circulating spermidine and tryptophan as potential biomarkers associated with the complete pathological response to trastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast cancer 
Oncotarget  2016;7(26):39809-39822.
Defining biomarkers that predict therapeutic effects and adverse events is a crucial mandate to guide patient selection for personalized cancer treatments. In the present study, we applied a pharmacometabolomics approach to identify biomarkers potentially associated with pathological complete response to trastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast cancer patients. Based on histological response the 34 patients enrolled in the study were subdivided into two groups: good responders (n = 15) and poor responders (n = 19). The pre-treatment serum targeted metabolomics profile of all patients were analyzed by liquid chromatography tandem mass spectrometry and the differences in the metabolomics profile between the two groups was investigated by multivariate partial least squares discrimination analysis. The most relevant metabolites that differentiate the two groups of patients were spermidine and tryptophan. The Good responders showed higher levels of spermidine and lower amounts of tryptophan compared with the poor responders (p < 0.001, q < 0.05). The serum level of these two metabolites identified patients who achieved a pathological complete response with a sensitivity of 90% [0.79–1.00] and a specificity of 0.87% [0.67–1.00]. These preliminary results support the role played by the individual patients' metabolism in determining the response to cancer treatments and may be a useful tool to select patients that are more likely to benefit from the trastuzumab-paclitaxel treatment.
doi:10.18632/oncotarget.9489
PMCID: PMC5129972  PMID: 27223427
pharmacometabolomics; pharmacometabonomics; metabolomics; breast; cancer
7.  A functional biological network centered on XRCC3: a new possible marker of chemoradiotherapy resistance in rectal cancer patients 
Cancer Biology & Therapy  2015;16(8):1160-1171.
Preoperative chemoradiotherapy is widely used to improve local control of disease, sphincter preservation and to improve survival in patients with locally advanced rectal cancer. Patients enrolled in the present study underwent preoperative chemoradiotherapy, followed by surgical excision. Response to chemoradiotherapy was evaluated according to Mandard's Tumor Regression Grade (TRG). TRG 3, 4 and 5 were considered as partial or no response while TRG 1 and 2 as complete response. From pretherapeutic biopsies of 84 locally advanced rectal carcinomas available for the analysis, only 42 of them showed 70% cancer cellularity at least. By determining gene expression profiles, responders and non-responders showed significantly different expression levels for 19 genes (P < 0.001). We fitted a logistic model selected with a stepwise procedure optimizing the Akaike Information Criterion (AIC) and then validated by means of leave one out cross validation (LOOCV, accuracy = 95%). Four genes were retained in the achieved model: ZNF160, XRCC3, HFM1 and ASXL2. Real time PCR confirmed that XRCC3 is overexpressed in responders group and HFM1 and ASXL2 showed a positive trend. In vitro test on colon cancer resistant/susceptible to chemoradioterapy cells, finally prove that XRCC3 deregulation is extensively involved in the chemoresistance mechanisms. Protein-protein interactions (PPI) analysis involving the predictive classifier revealed a network of 45 interacting nodes (proteins) with TRAF6 gene playing a keystone role in the network. The present study confirmed the possibility that gene expression profiling combined with integrative computational biology is useful to predict complete responses to preoperative chemoradiotherapy in patients with advanced rectal cancer.
doi:10.1080/15384047.2015.1046652
PMCID: PMC4622011  PMID: 26023803
biological network; integrated approach; microarray; preoperative chemoradiotherapy; rectal cancer; treatment response; XRCC3
8.  Can the microRNA expression profile help to identify novel targets for zoledronic acid in breast cancer? 
Oncotarget  2016;7(20):29321-29332.
Zoledronic acid (ZOL), belonging to third generation bisphosphonate family, is a potent inhibitor of osteoclast-mediated bone resorption, widely used to effectively prevent osteolysis in breast cancer patients who develop bone metastases. Low doses of ZOL have been shown to exhibit a direct anticancer role, by inhibiting cell adhesion, invasion, cytoskeleton remodelling and proliferation in MCF-7 breast cancer cells. In order to identify the molecular mechanisms and signaling pathways underlying the anticancer activity exerted by ZOL, we analyzed for the first time the microRNA expression profile in breast cancer cells. A large-scale microarray analysis of 377 miRNAs was performed on MCF7 cells treated with 10 μM ZOL for 24 h compared to untreated cells. Furthermore, the expression of specific ZOL-induced miRNAs was analyzed in MCF-7 and SkBr3 cells through Real-time PCR. Low-dose treatment with ZOL significantly altered expression of 54 miRNAs. Nine upregulated and twelve downregulated miRNAs have been identified after 24 h of treatment. Also, ZOL induced expression of 11 specific miRNAs and silenced expression of 22 miRNAs. MiRNA data analysis revealed the involvement of differentially expressed miRNAs in PI3K/Akt, MAPK, Wnt, TGF-β, Jak-STAT and mTOR signaling pathways, and regulation of actin cytoskeleton. Our results have been shown to be perfectly coherent with the recent findings reported in literature concerning changes in expression of some miRNAs involved in bone metastasis formation, progression, therapy resistance in breast cancer. In conclusion, this data supports the hypothesis that ZOL-induced modification of the miRNA expression profile contributes to the anticancer efficacy of this agent.
doi:10.18632/oncotarget.8722
PMCID: PMC5045398  PMID: 27081088
bone metastasis; breast cancer; microarray analysis; miRNA expression profile; zoledronic acid
9.  Zoledronic acid-encapsulating self-assembling nanoparticles and doxorubicin: a combinatorial approach to overcome simultaneously chemoresistance and immunoresistance in breast tumors 
Oncotarget  2016;7(15):20753-20772.
The resistance to chemotherapy and the tumor escape from host immunosurveillance are the main causes of the failure of anthracycline-based regimens in breast cancer, where an effective chemo-immunosensitizing strategy is lacking.
The clinically used aminobisphosphonate zoledronic acid (ZA) reverses chemoresistance and immunoresistance in vitro. Previously we developed a nanoparticle-based zoledronic acid-containing formulation (NZ) that allowed a higher intratumor delivery of the drug compared with free ZA in vivo. We tested its efficacy in combination with doxorubicin in breast tumors refractory to chemotherapy and immune system recognition as a new combinatorial approach to produce chemo- and immunosensitization.
NZ reduced the IC50 of doxorubicin in human and murine chemoresistant breast cancer cells and restored the doxorubicin efficacy against chemo-immunoresistant tumors implanted in immunocompetent mice. By reducing the metabolic flux through the mevalonate pathway, NZ lowered the activity of Ras/ERK1/2/HIF-1α axis and the expression of P-glycoprotein, decreased the glycolysis and the mitochondrial respiratory chain, induced a cytochrome c/caspase 9/caspase 3-dependent apoptosis, thus restoring the direct cytotoxic effects of doxorubicin on tumor cell. Moreover, NZ restored the doxorubicin-induced immunogenic cell death and reversed the tumor-induced immunosuppression due to the production of kynurenine, by inhibiting the STAT3/indoleamine 2,3 dioxygenase axis. These events increased the number of dendritic cells and decreased the number of immunosuppressive T-regulatory cells infiltrating the tumors.
Our work proposes the use of nanoparticle encapsulating zoledronic acid as an effective tool overcoming at the same time chemoresistance and immunoresistance in breast tumors, thanks to the effects exerted on tumor cell and tumor-infiltrating immune cells.
doi:10.18632/oncotarget.8012
PMCID: PMC4991490  PMID: 26980746
self-assembling nanoparticles; zoledronic acid; doxorubicin resistance; immunoresistance; immunosuppression
11.  PPARγ Activation Attenuates Opioid Consumption and Modulates Mesolimbic Dopamine Transmission 
Neuropsychopharmacology  2014;40(4):927-937.
PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.
doi:10.1038/npp.2014.268
PMCID: PMC4330506  PMID: 25311134
12.  Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines 
Oncotarget  2015;7(4):4077-4092.
New delivery systems including liposomes have been developed to circumvent drug resistance. To enhance the antitumor efficacy of liposomes encapsulating anti-cancer agents, we used liposomes externally conjugated to the 20 residue peptide gH625. Physicochemical characterization of the liposome system showed a size of 140 nm with uniform distribution and high doxorubicin encapsulation efficiency. We evaluated the effects of increasing concentrations of liposomes encapsulating Doxo (LipoDoxo), liposomes encapsulating Doxo conjugated to gH625 (LipoDoxo-gH625), empty liposomes (Lipo) or free Doxo on growth inhibition of either wild type (A549) or doxorubicin-resistant (A549 Dx) human lung adenocarcinoma. After 72 h, we found that the growth inhibition induced by LipoDoxo-gH625 was higher than that caused by LipoDoxo with an IC50 of 1 and 0.3 μM in A549 and A549 Dx cells, respectively. The data on cell growth inhibition were paralleled by an higher oxidative stress and an increased uptake of Doxo induced by LipoDoxo-gH625 compared to LipoDoxo, above all in A549 Dx cells. Cytometric analysis showed that the antiproliferative effects of each drug treatment were mainly due to the induction of apoptosis. In conclusion, liposomes armed with gH625 are able to overcome doxorubicin resistance in lung adenocarcinoma cell lines.
doi:10.18632/oncotarget.6013
PMCID: PMC4826191  PMID: 26554306
doxorubicin; drug resistance; membranotropic peptide; liposome; lung adenocarcinoma
13.  Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance 
Stem Cells International  2016;2016:6809105.
Among all solid tumors, the high-grade glioma appears to be the most vascularized one. In fact, “microvascular hyperplasia” is a hallmark of GBM. An altered vascular network determines irregular blood flow, so that tumor cells spread rapidly beyond the diffusion distance of oxygen in the tissue, with the consequent formation of hypoxic or anoxic areas, where the bulk of glioblastoma stem cells (GSCs) reside. The response to this event is the induction of angiogenesis, a process mediated by hypoxia inducible factors. However, this new capillary network is not efficient in maintaining a proper oxygen supply to the tumor mass, thereby causing an oxygen gradient within the neoplastic zone. This microenvironment helps GSCs to remain in a “quiescent” state preserving their potential to proliferate and differentiate, thus protecting them by the effects of chemo- and radiotherapy. Recent evidences suggest that responses of glioblastoma to standard therapies are determined by the microenvironment of the niche, where the GSCs reside, allowing a variety of mechanisms that contribute to the chemo- and radioresistance, by preserving GSCs. It is, therefore, crucial to investigate the components/factors of the niche in order to formulate new adjuvant therapies rendering more efficiently the gold standard therapies for this neoplasm.
doi:10.1155/2016/6809105
PMCID: PMC4736577  PMID: 26880981
14.  Metabolic Determinants and Anthropometric Indicators Impact Clinical-pathological Features in Epithelial Ovarian Cancer Patients 
Journal of Cancer  2016;7(5):516-522.
Background: Over the last twenty years, the efforts of the scientific community devoted to the comprehension and treatment of ovarian cancer have remained poorly remunerative, with the case-fatality ratio of this disease remaining disappointedly high. Limited knowledge of the basic principles regulating ovarian carcinogenesis and factors impacting the course of disease may significantly impair our ability to intervene in early stages and lessen our expectations in terms of treatment outcomes. In the present study, we sought to assess whether metabolic factors and anthropometric indicators, i.e., pre-treatment fasting glucose and body mass index, are associated with renown cancer related prognostic factors such as tumour stage and grade at diagnosis.
Materials and Methods: Study participants were 147 women diagnosed with epithelial ovarian cancer and treated with platinum based regimens and/or surgery at the Regina Elena National Cancer Institute of Rome, Italy. Glucose levels were assessed at the institutional laboratories on venous blood collected in overnight fasting conditions and prior to any therapeutic procedure. Stage was coded according to the FIGO staging system based on the results of the diagnostic workup, while tumour grade was locally assessed by an expert pathologist. Participants' characteristics were descriptively analyzed for the overall study population and in a subgroup of 70 patients for whom data on body mass index (BMI) were available. FIGO stage and grade were compared by categories of pre-treatment fasting glucose defined upon the median value, i.e., 89 mg/dl. The association of interest was tested in regression models including BMI.
Results: For the overall study population, patients in the lowest category of fasting glucose were significantly more likely to exhibit a FIGO stage III-IV at diagnosis compared with their counterpart in the highest glucose category (81.3 vs 66.7%, p: 0.021). Subgroup analysis in 70 patients with BMI data confirmed this association (81.5 vs 55.8, p: 0.049), which remained significant when tested in regression models including BMI (OR: 0.28 95% CI 0.086-0.89, p: 0.031). No relevant evidence emerged when testing the association between fasting glucose and tumour grade.
Conclusions: In patients diagnosed with epithelial ovarian cancer, pre-treatment glucose levels appear to be inversely associated with FIGO stage. Further studies are warranted to eventually confirm and correctly interpret the implications of this novel finding.
doi:10.7150/jca.13578
PMCID: PMC4780127  PMID: 26958087
epithelial ovarian cancer; fasting glucose; body mass index; FIGO stage; tumour grade
15.  Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex 
Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating exogenous and, probably, endogenous CNTF.
doi:10.3389/fnins.2016.00289
PMCID: PMC4921504  PMID: 27445662
area postrema; solitary tract nucleus; dorsal motor nucleus of the vagus; brainstem; Stat signaling; c-Fos; nestin; cholinergic
16.  Targeting CXCR1 on breast cancer stem cells: signaling pathways and clinical application modelling 
Oncotarget  2015;6(41):43375-43394.
In breast cancer it has been proposed that the presence of cancer stem cells may drive tumor initiation, progression and recurrences. IL-8, up-regulated in breast cancer, and associated with poor prognosis, increases CSC self-renewal in cell line models. It signals via two cell surface receptors, CXCR1 and CXCR2. Recently, the IL-8/CXCR1 axis was proposed as an attractive pathway for the design of specific therapies against breast cancer stem cells. Reparixin, a powerful CXCR1 inhibitor, was effective in reducing in vivo the tumour-initiating population in several NOD/SCID mice breast cancer models, showing that the selective targeting of CXCR1 and the combination of reparixin and docetaxel resulted in a concomitant reduction of the bulk tumour mass and CSC population. The available data indicate that IL-8, expressed by tumour cells and induced by chemotherapeutic treatment, is a key regulator of the survival and self-renewal of the population of CXCR1-expressing CSC. Consequently, this investigation on the mechanism of action of the reparixin/paclitaxel combination, was based on the observation that reparixin treatment contained the formation of metastases in several experimental models. However, specific data on the formation of breast cancer brain metastases, which carry remarkable morbidity and mortality to a substantial proportion of advanced breast cancer patients, have not been generated. The obtained data indicate a beneficial use of the drug combination reparixin and paclitaxel to counteract brain tumour metastasis due to CSC, probably due to the combined effects of the two drugs, the pro-apoptotic action of paclitaxel and the cytostatic and anti-migratory effects of reparixin.
PMCID: PMC4791238  PMID: 26517518
preclinical MRI
17.  Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model 
Oncotarget  2015;6(39):42091-42104.
Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an anti-proliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma.
PMCID: PMC4747212  PMID: 26540346
glioblastoma; autophagy; targeted therapy
18.  MicroRNA-29b-1 impairs in vitro cell proliferation, self-renewal and chemoresistance of human osteosarcoma 3AB-OS cancer stem cells 
International Journal of Oncology  2014;45(5):2013-2023.
Osteosarcoma (OS) is the most common type of bone cancer, with a peak incidence in the early childhood. Emerging evidence suggests that treatments targeting cancer stem cells (CSCs) within a tumor can halt cancer and improve patient survival. MicroRNAs (miRNAs) have been implicated in the maintenance of the CSC phenotype, thus, identification of CSC-related miRNAs would provide information for a better understanding of CSCs. Downregulation of miRNA-29 family members (miR-29a/b/c; miR-29s) was observed in human OS, however, little is known about the functions of miR-29s in human OS CSCs. Previously, during the characterization of 3AB-OS cells, a CSC line selected from human OS MG63 cells, we showed a potent downregulation of miR-29b. In this study, after stable transfection of 3AB-OS cells with miR-29b-1, we investigated the role of miR-29b-1 in regulating cell proliferation, sarcosphere-forming ability, clonogenic growth, chemosensitivity, migration and invasive ability of 3AB-OS cells, in vitro. We found that, miR-29b-1 overexpression consistently reduced both, 3AB-OS CSCs growth in two- and three-dimensional culture systems and their sarcosphere- and colony-forming ability. In addition, while miR-29b-1 overexpression sensitized 3AB-OS cells to chemotherapeutic drug-induced apoptosis, it did not influence their migratory and invasive capacities, thus suggesting a context-depending role of miR-29b-1. Using publicly available databases, we proceeded to identify potential miR-29b target genes, known to play a role in the above reported functions. Among these targets we analyzed CD133, N-Myc, CCND2, E2F1 and E2F2, Bcl-2 and IAP-2. We also analyzed the most important stemness markers as Oct3/4, Sox2 and Nanog. Real-time RT-PCR and western-blot analyses showed that miR-29b-1 negatively regulated the expression of these markers. Overall, the results show that miR-29b-1 suppresses stemness properties of 3AB-OS CSCs and suggest that developing miR-29b-1 as a novel therapeutic agent might offer benefits for OS treatment.
doi:10.3892/ijo.2014.2618
PMCID: PMC4432724  PMID: 25174983
osteosarcoma; cancer stem cells; microRNA; microRNA-29b-1; multidrug resistance; 3AB-OS cells
19.  An integrative approach for the identification of prognostic and predictive biomarkers in rectal cancer 
Oncotarget  2015;6(32):32561-32574.
Introduction
Colorectal cancer is the third most common cancer in the world, a small fraction of which is represented by locally advanced rectal cancer (LARC). If not medically contraindicated, preoperative chemoradiotherapy, represent the standard of care for LARC patients. Unfortunately, patients shows a wide range of response rates in which approximately 20% has a complete pathological response, whereas in 20 to 40% the response is poor or absent.
Results
The following specific gene signature, able to discriminate responders' patients from non-responders, were founded: AKR1C3, CXCL11, CXCL10, IDO1, CXCL9, MMP12 and HLA-DRA. These genes are mainly involved in immune system pathways and interact with drugs traditionally used in the adjuvant treatment of rectal cancer.
Discussion
The present study suggests that new ideas for therapy could be found not only limited to studying genes differentially expressed between the two groups of patients but deepening the mechanisms, associated to response, in which they are involved.
Methods
Gene expression studies performed by: Agostini et al., Rimkus et al. and Kim et al. have been merged through a meta-analysis of the raw data. Gene expression data-sets have been processed using A-MADMAN. Common differentially expressed gene (DEG) were identified through SAM analysis. To further characterize the identified DEG we deeply investigated its biological role using an integrative computational biology approach.
PMCID: PMC4741712  PMID: 26359356
rectal cancer; integrated approach; biological network; prognostic; predictive
20.  Self-assembling nanoparticles encapsulating zoledronic acid revert multidrug resistance in cancer cells 
Oncotarget  2015;6(31):31461-31478.
The overexpression of ATP binding cassette (ABC) transporters makes tumor cells simultaneously resistant to several cytotoxic drugs. Impairing the energy metabolism of multidrug resistant (MDR) cells is a promising chemosensitizing strategy, but many metabolic modifiers are too toxic in vivo. We previously observed that the aminobisphosphonate zoledronic acid inhibits the activity of hypoxia inducible factor-1α (HIF-1α), a master regulator of cancer cell metabolism. Free zoledronic acid, however, reaches low intratumor concentration. We synthesized nanoparticle formulations of the aminobisphosphonate that allow a higher intratumor delivery of the drug. We investigated whether they are effective metabolic modifiers and chemosensitizing agents against human MDR cancer cells in vitro and in vivo.
At not toxic dosage, nanoparticles carrying zoledronic acid chemosensitized MDR cells to a broad spectrum of cytotoxic drugs, independently of the type of ABC transporters expressed. The nanoparticles inhibited the isoprenoid synthesis and the Ras/ERK1/2-driven activation of HIF-1α, decreased the transcription and activity of glycolytic enzymes, the glucose flux through the glycolysis and tricarboxylic acid cycle, the electron flux through the mitochondrial respiratory chain, the synthesis of ATP. So doing, they lowered the ATP-dependent activity of ABC transporters, increasing the chemotherapy efficacy in vitro and in vivo. These effects were more pronounced in MDR cells than in chemosensitive ones and were due to the inhibition of farnesyl pyrophosphate synthase (FPPS), as demonstrated in FPPS-silenced tumors.
Our work proposes nanoparticle formulations of zoledronic acid as the first not toxic metabolic modifiers, effective against MDR tumors.
PMCID: PMC4741618  PMID: 26372812
self-assembling nanoparticles; zoledronic acid; ATP binding cassette transporters; multidrug resistance; hypoxia inducible factor-1α
21.  Triple negative breast cancer: looking for the missing link between biology and treatments 
Oncotarget  2015;6(29):26560-26574.
The so called “Triple Negative Breast Cancer” (TNBC) represents approximately 15-20% of breast cancers. This acronym simply means that the tumour does not express oestrogen receptor (ER) and progesterone receptor (PR) and does not exhibit amplification of the human epidermal growth factor receptor 2 (HER2) gene. Despite this unambiguous definition, TNBCs are an heterogeneous group of tumours with just one common clinical feature: a distinctly aggressive nature with higher rates of relapse and shorter overall survival in the metastatic setting compared with other subtypes of breast cancer. Because of the absence of well-defined molecular targets, cytotoxic chemotherapy is currently the only treatment option for TNBC.
In the last decades, the use of more aggressive chemotherapy has produced a clear improvement of the prognosis in women with TNBC, but this approach results in an unacceptable deterioration in the quality of life, also if some support therapies try to relieve patients from distress. In addition, there is the general belief that it is impossible to further improve the prognosis of TNBC patients with chemotherapy alone. In view of that, there is a feverish search for new “clever drugs” able both to rescue chemo-resistant, and to reduce the burden of chemotherapy in chemo-responsive TNBC patients.
A major obstacle to identifying actionable targets in TNBC is the vast disease heterogeneity both inter-tumour and intra-tumour and years of study have failed to demonstrate a single unifying alteration that is targetable in TNBC. TNBC is considered the subtype that best benefits from the neoadjuvant model, since the strong correlation between pathological Complete Response and long-term Disease-Free-Survival in these patients.
In this review, we discuss the recent discoveries that have furthered our understanding of TNBC, with a focus on the subtyping of TNBC. We also explore the implications of these discoveries for future treatments and highlight the need for a completely different type of clinical trials.
PMCID: PMC4694936  PMID: 26387133
breast cancer; triple negative; oncology; treatments; biology
22.  A decade of EGFR inhibition in EGFR-mutated non small cell lung cancer (NSCLC): Old successes and future perspectives 
Oncotarget  2015;6(29):26814-26825.
The discovery of Epidermal Growth Factor Receptor (EGFR) mutations in Non Small Cell Lung Cancer (NSCLC) launched the era of personalized medicine in advanced NSCLC, leading to a dramatic shift in the therapeutic landscape of this disease. After ten years from the individuation of activating mutations in the tyrosine kinase domain of the EGFR in NSCLC patients responding to the EGFR tyrosine kinase inhibitor (TKI) Gefitinib, several progresses have been done and first line treatment with EGFR TKIs is a firmly established option in advanced EGFR-mutated NSCLC patients. During the last decade, different EGFR TKIs have been developed and three inhibitors have been approved so far in these selected patients. However, despite great breakthroughs have been made, treatment of these molecularly selected patients poses novel therapeutic challenges, such as emerging of acquired resistance, brain metastases development or the need to translate these treatments in earlier clinical settings, such as adjuvant therapy.
The aim of this paper is to provide a comprehensive review of the major progresses reported so far in the EGFR inhibition in this molecularly-selected subgroup of NSCLC patients, from the early successes with first generation EGFR TKIs, Erlotinib and Gefitinib, to the novel irreversible and mutant-selective inhibitors and ultimately the emerging challenges that we, in the next future, are called to deal with.
PMCID: PMC4694955  PMID: 26308162
EGFR mutations; third generation EGFR TKIs; non small cell lung cancer; tyrosine kinase inhibitors; targeted therapy
23.  Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts 
Oncotarget  2015;6(29):27343-27358.
miR-21 is an oncogenic microRNA (miRNA) with an emerging role as therapeutic target in human malignancies, including multiple myeloma (MM). Here we investigated whether miR-21 is involved in MM-related bone disease (BD). We found that miR-21 expression is dramatically enhanced, while osteoprotegerin (OPG) is strongly reduced, in bone marrow stromal cells (BMSCs) adherent to MM cells. On this basis, we validated the 3′UTR of OPG mRNA as miR-21 target. Constitutive miR-21 inhibition in lentiviral-transduced BMSCs adherent to MM cells restored OPG expression and secretion. Interestingly, miR-21 inhibition reduced RANKL production by BMSCs. Overexpression of protein inhibitor of activated STAT3 (PIAS3), which is a direct and validated target of miR-21, antagonized STAT3-mediated RANKL gene activation. Finally, we demonstrate that constitutive expression of miR-21 inhibitors in BMSCs restores RANKL/OPG balance and dramatically impairs the resorbing activity of mature osteoclasts. Taken together, our data provide proof-of-concept that miR-21 overexpression within MM-microenviroment plays a crucial role in bone resorption/apposition balance, supporting the design of innovative miR-21 inhibition-based strategies for MM-related BD.
PMCID: PMC4694994  PMID: 26160841
miR-21; miRNAs; multiple myeloma bone disease; OPG; RANKL
24.  New findings on primary and acquired resistance to anti-EGFR therapy in metastatic colorectal cancer: do all roads lead to RAS? 
Oncotarget  2015;6(28):24780-24796.
Anti-epidermal growth factor receptor therapy with the monoclonal antibodies cetuximab and panitumumab is the main targeted treatment to combine with standard chemotherapy for metastatic colorectal cancer. Many clinical studies have shown the benefit of the addition of these agents for patients without mutations in the EGFR pathway. Many biomarkers, including KRAS and NRAS mutations, BRAF mutations, PIK3CA mutations, PTEN loss, AREG and EREG expression, and HER-2 amplification have already been identified to select responders to anti-EGFR agents. Among these alterations KRAS and NRAS mutations are currently recognized as the best predictive factors for primary resistance. Liquid biopsy, which helps to isolate circulating tumor DNA, is an innovative method to study both primary and acquired resistance to anti-EGFR monoclonal antibodies. However, high-sensitivity techniques should be used to enable the identification of a wide set of gene mutations related to resistance.
PMCID: PMC4694794  PMID: 26318427
RAS; colorectal cancer; epidermal growth factor receptor; cetuximab; panitumumab
25.  Clinical Features and Outcomes of Pasteurella multocida Infection 
Medicine  2015;94(36):e1285.
Abstract
Pasteurella multocida, a zoonotic infectious organism, has most often been described in patients after an animal bite. Here, we characterize the clinical features and outcomes of P multocida infection in a large cohort of patients according to the presence or absence of an animal bite.
We retrospectively searched MUSC's laboratory information system for all patients with positive P multocida cultures from 2000 to 2014. Extensive data were abstracted, including clinical and outcome data. The Charlson comorbidity index (CCI) was used to assess comorbidities among patients.
We identified 44 patients with P multocida infections, including 25 with an animal bite. The average age was 64 years and the majority of patients were women (N = 30). There was no difference in age and sex distribution among those with and without a bite (P = 0.38 and 0.75, respectively). A CCI ≥1 was significantly associated with the absence of a bite (P = 0.006). Patients presenting without a bite were more frequently bacteremic (37% vs 4%, respectively, P = 0.001), and were hospitalized more often (84% vs 44%, respectively, P = 0.012). Of the 8 patients who required intensive care unit (ICU)-based care, 7 were non-bite-related. There were 4 deaths, all occurring in patients not bitten.
P multocida infections not associated with an animal bite were often associated with bacteremia, severe comorbidity(ies), immune-incompetent states, the need for ICU management, and were associated with substantial mortality.
doi:10.1097/MD.0000000000001285
PMCID: PMC4616664  PMID: 26356688

Results 1-25 (100)