Search tips
Search criteria

Results 1-25 (63)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Circulating tumor cells in newly diagnosed inflammatory breast cancer 
Circulating tumor cells (CTCs) are an independent prognostic factor for progression-free survival (PFS) and overall survival (OS) in patients with metastatic breast cancer. Inflammatory breast cancer (IBC) is one of the most aggressive forms of breast cancer. The prognostic value of a CTC count in newly diagnosed IBC has not been established. The aim of this study was to assess the prognostic value of a baseline CTC count in patients with newly diagnosed IBC.
This retrospective study included 147 patients with newly diagnosed IBC (77 with locally advanced and 70 with metastatic IBC) treated with neoadjuvant therapy or first-line chemotherapy during the period from January 2004 through December 2012 at The University of Texas MD Anderson Cancer Center. CTCs were detected and enumerated by using the CellSearch system before patients were started with chemotherapy.
The proportion of patients with ≥1 CTC was lower among patients with stage III than among patients with metastatic IBC (54.5% versus 84.3%; P = 0.0002); the proportion of patients with ≥5 CTCs was also lower for stage III than for metastatic IBC (19.5% versus 47.1%; P = 0.0004). Patients with fewer than five CTCs had significantly better progression-free survival (PFS) (hazard ratio (HR) = 0.60; P = 0.02) and overall survival (HR = 0.59; P = 0.03) than patients with five or more CTCs. Among patients with stage III IBC, there was a nonsignificant difference in PFS (HR = 0.66; 95% confidence interval (CI), 0.31 to 1.39; P = 0.29) and OS (HR = 0.54; 95% CI, 0.24 to 1.26; P = 0.48) in patients with no CTCs compared with patients with one or more CTCs. In multivariate analysis, CTC was prognostic for PFS and OS independent of clinical stage.
CTCs can be detected in a large proportion of patients with newly diagnosed IBC and are a strong predictor of worse prognosis in patients with newly diagnosed IBC.
PMCID: PMC4318180  PMID: 25572591
2.  miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells 
Cell Cycle  2013;12(23):3650-3662.
Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells.
PMCID: PMC3903716  PMID: 24091729
miR-29b; epi-miRNA; microRNA; multiple myeloma; methylation
3.  Cancer mortality trends between 1988 and 2009 in the metropolitan area of Naples and Caserta, Southern Italy 
Cancer Biology & Therapy  2013;14(12):1113-1122.
Mortality data by geographic area and trend-based surveillance are particularly relevant in orienting public health decisions targeting specific populations. We analyzed overall and site-specific cancer mortality between 1988 and 2009 in the metropolitan area of Naples and Caserta in southern Italy. Age-standardized mortality rates (SMR) were computed for each 5-y age group, by gender, primitive cancer site and specific Province in the overall population and age-defined subgroups. Cancer mortality trends were quantified by annual percent change (APC) and 95% confidence interval (CI). From Naples and Caserta, the reduction observed between 1988 and 2009 in SMR in males, but not in females, was significantly lower compared with the decrease reported at a national level (−11.4% and −28.4%, respectively). In elderly men, differences between local and national SMR were more pronounced (+13.6% compared with −2.7%). In males, the joinpoint regression analysis showed the following APC and 95% CI: −0.9%/year (−1.2; −0.7) and −0.6%/year (−1.0; −0.2) for Naples and Caserta, respectively. In females, estimates were −0.6%/year (−0.8; −0.5) and −0.7%/year (−1.2; −0.3). The overall orientation toward declining cancer mortality trends appeared in antithesis with the slight, but significant, increase for some tumors (e.g., pancreatic cancer in both genders). A complex mixture of heterogeneous factors concurs to explain the evidence observed including lifestyle, access to screening procedures, advancements in cancer diagnosis and treatment. Further details might eventually derive from biomonitoring studies for ascertaining the causal link between exposure to potential contaminants in air, water, and soil and cancer-related outcomes in the area of interest.
PMCID: PMC3912034  PMID: 24025410
cancer mortality; time trends; Naples; metropolitan area; southern Italy; joinpoint; analysis
4.  p53 status as effect modifier of the association between pre-treatment fasting glucose and breast cancer outcomes in non diabetic, HER2 positive patients treated with trastuzumab 
Oncotarget  2014;5(21):10382-10392.
Mounting evidence supports the role of p53 in metabolic processes involved in breast carcinogenesis. We investigated whether p53 status affects the association of pre-treatment fasting glucose with treatment outcomes in 106 non diabetic, HER2 positive breast cancer patients treated with trastuzumab. p53 status was validated against gene sequencing of selected codons in 49 patients. The Kaplan–Meier method and log rank test were used to compare survival by categories of fasting glucose in the overall population and separate settings. Cox models included age and body mass index. Direct sequencing confirmed the lack of mutations in 73.7% of p53 negative patients and their presence in 53.3% of p53 positive cases. At 66 months, 88.3% of patients with glucose ≤ 89.0 mg/dl (median value) did not experiment disease progression compared with 70.0% in the highest category (p=0.034), with glucose being an independent predictor (p=0.046). Stratified analysis confirmed this association in p53 negative patients only (p=0.01). In the early setting, data suggested longer disease free survival in p53 negative patients in the lowest glucose category (p=0.053). In our study, p53 status acted as effect modifier of the investigated association. This may help differentiate target sub-groups and affect outcomes interpretation in similarly characterized patients.
PMCID: PMC4279380  PMID: 25071015
p53 status; fasting glucose; HER2 positive breast cancer; trastuzumab.
5.  Expression of stemness genes in primary breast cancer tissues: the role of SOX2 as a prognostic marker for detection of early recurrence 
Oncotarget  2014;5(20):9678-9688.
The events leading to breast cancer (BC) progression or recurrence are not completely understood and new prognostic markers aiming at identifying high risk-patients and to develop suitable therapy are highly demanded. Experimental evidences found in cancer cells a deregulated expression of some genes involved in governance of stem cell properties and demonstrated a relationship between stemness genes overexpression and poorly differentiated BC subtypes.
In the present study 140 primary invasive BC specimens were collected. The expression profiles of 13 genes belonging to the OCT3/SOX2/NANOG/KLF4 core circuitry by RT-PCR were analyzed and any correlation between their expression and the BC clinic-pathological features (CPfs) and prognosis was investigated.
In our cohort (117 samples), NANOG, GDF3 and SOX2 significantly correlated with grade 2, Nodes negative status and higher KI67 proliferation index, respectively (p=0.019, p=0.029, p= 0.035). According to multivariate analysis, SOX2 expression resulted independently associated with increased risk of recurrence (HR= 2,99; p= p=0,004) as well as Nodes status (HR=2,44; p=0,009) and T-size >1 (HR=1,77; p=0,035).
Our study provides further proof of the suitable use of stemness genes in BC management. Interestingly, a prognostic role of SOX2, which seems to be a suitable marker of early recurrence irrespective of other clinicopathological features.
PMCID: PMC4259429  PMID: 25127259
Breast Cancer; Gene expression; Recurrence; SOX2; Stemness genes
6.  Cocoa Powder Triggers Neuroprotective and Preventive Effects in a Human Alzheimer's Disease Model by Modulating BDNF Signaling Pathway 
Journal of cellular biochemistry  2013;114(10):2209-2220.
The molecular mechanisms linking Aβ to the onset of neurotoxicity are still largely unknown, but several lines of evidence point to reactive oxygen species, which are produced even under the effect of nanomolar concentrations of soluble Aβ-oligomers. The consequent oxidative stress is considered as the mediator of a cascade of degenerative events in many neurological disorders. Epidemiological studies indicate that dietary habits and antioxidants from diet can influence the incidence of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In the recent years, a number of reviews have reported on neuroprotective effects of polyphenols in cell and animal models. However, the majority of these studies have focused only on the anti-oxidant properties of these compounds and less on the mechanism/s of action at cellular level. In this work we investigated the effect of cocoa polyphenolic extract on a human AD in vitro model. The results obtained, other than confirming the anti-oxidant properties of cocoa, demonstrate that cocoa polyphenols triggers neuroprotection by activating BDNF survival pathway, both on Aβ plaque treated cells and on Aβ oligomers treated cells, resulting in the counteraction of neurite dystrophy. On the light of the results obtained the use of cocoa powder as preventive agent for neurodegeneration is further supported.
PMCID: PMC4170833  PMID: 23554028
Neurodegenerative Diseases; Anti-Oxidant; BDNF Signaling; Neurons; Neurites; Cytoskeletric Proteins
7.  Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination 
Traditional factors currently used for prognostic stratification do not always adequately predict treatment response and disease evolution in advanced breast cancer patients. Therefore, the use of blood-based markers, such as circulating tumor cells (CTCs), represents a promising complementary strategy for disease monitoring. In this retrospective study, we explored the role of CTC counts as predictors of disease evolution in breast cancer patients with limited metastatic dissemination.
A total of 492 advanced breast cancer patients who had a CTC count assessed by CellSearch prior to starting a new line of systemic therapy were eligible for this analysis. Using the threshold of 5 CTCs/7.5 ml of blood, pretreatment CTC counts were correlated in the overall population with metastatic site distribution, evaluated at baseline and at the time of treatment failure, using Fisher’s exact test. Time to visceral progression and time to the development of new metastatic lesions and sites were estimated in patients with nonvisceral metastases and with single-site metastatic disease, respectively, by the Kaplan-Meier method. Survival times were compared between groups according to pretreatment CTC count by logrank test.
In the overall population, a pretreatment level ≥5 CTCs/7.5 ml was associated with an increased baseline number of metastatic sites compared with <5 CTCs/7.5 ml (P = 0.0077). At the time of treatment failure, patients with ≥5 CTCs/7.5 ml more frequently developed new metastatic lesions and sites compared with those with <5 CTCs/7.5 ml (development of new lesions: P = 0.0002; development of new sites: P = 0.0031). Among patients with disease originally confined to nonvisceral sites, ≥5 CTCs/7.5 ml was associated with remarkably shorter time to visceral metastases (P = 0.0021) and overall survival (P = 0.0006) compared with <5 CTCs/7.5 ml. In patients with single-site metastatic disease, ≥5 CTCs/7.5 ml was associated with a significant reduction of the time to development of new metastatic sites (P = 0.0051) and new lesions (P = 0.0002) and with worse overall survival (P = 0.0101).
Our results suggest that baseline CTC counts can be used as an early predictor of metastatic potential in breast cancer patients with limited metastatic dissemination.
Electronic supplementary material
The online version of this article (doi:10.1186/s13058-014-0440-8) contains supplementary material, which is available to authorized users.
PMCID: PMC4303121  PMID: 25223629
8.  Combined effects of PI3K and SRC kinase inhibitors with imatinib on intracellular calcium levels, autophagy, and apoptosis in CML-PBL cells 
Cell Cycle  2013;12(17):2839-2848.
Imatinib induces a complete cytogenetic regression in a large percentage of patients affected by chronic myeloid leukemia (CML) until mutations in the kinase domain of BCR-ABL appear. Alternative strategies for CML patients include the inhibition of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, which is constitutively activated in leukemia cells and seems important for the regulation of cell proliferation, viability, and autophagy. In this study, we verified the effect of imatinib mesylate (IM), alone or in association with LY294002 (LY) (a specific PI3K protein tyrosine kinase inhibitor) or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1) (a Src tyrosine kinase inhibitor), on viability, intracellular calcium mobilization, apoptosis, and autophagy, in order to verify possible mechanisms of interaction. Our data demonstrated that PP1 and LY interact synergistically with IM by inducing apoptosis and autophagy in Bcr/Abl+ leukemia cells and this mechanism is related to the stress of the endoplasmic reticulum (ER). Our findings suggest a reasonable relationship between apoptotic and autophagic activity of tyrosine kinase inhibitors (TKIs) and the functionality of smooth ER Ca2+-ATPase and inositol triphosphate receptors, independently of intracellular calcium levels. Therapeutic strategies combining imatinib with PI3K and/or Src kinase inhibitors warrant further investigations in Bcr/Abl+ malignancies, particularly in the cases of imatinib mesylate-resistant disease.
PMCID: PMC3899197  PMID: 23966159
chronic myeloid leukemia; imatinib mesylate; PI3K inhibitor; Src kinase inhibitor; intracellular calcium [Ca2+]i; apoptosis; autophagy
9.  Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth 
Deregulated expression of microRNAs (miRNAs) plays a role in the pathogenesis and progression of multiple myeloma (MM). Among upregulated miRNAs, miR-21 has oncogenic potential and therefore represents an attractive target for the treatment of MM.
Experimental design
Here, we investigated the in vitro and in vivo anti-MM activity of miR-21 inhibitors.
Either transient enforced expression or lentivirus-based constitutive expression of miR-21 inhibitors triggered significant growth inhibition of primary patient MM cells or IL-6-dependent/independent MM cell lines and overcame the protective activity of human bone marrow stromal cells. Conversely, transfection of miR-21 mimics significantly increased proliferation of MM cells, demonstrating its tumor promoting potential in MM. Importantly, upregulation of miR-21 canonical validated targets (PTEN, Rho-B and BTG2), together with functional impairment of both AKT and ERK signaling, were achieved by transfection of miR-21 inhibitors into MM cells. In vivo delivery of miR-21 inhibitors in SCID mice bearing human MM xenografts expressing miR-21 induced significant anti-tumor activity. Upregulation of PTEN and downregulation of p-AKT were observed in retrieved xenografts following treatment with miR-21 inhibitors.
Our findings show the first evidence that in vivo antagonism of miR-21 exerts anti-MM activity, providing the rationale for clinical development of miR-21 inhibitors in this still incurable disease.
PMCID: PMC4147955  PMID: 23446999
multiple myeloma; plasma cell leukemia; miR-21; miR-21 inhibitor; microRNA
10.  Novel findings about management of gastric cancer: A summary from 10th IGCC 
The Tenth International Gastric Cancer Congress (IGCC) was held in Verona, Italy, from June 19 to 22, 2013. The meeting enclosed various aspects of stomach tumor management, including both tightly clinical approaches, and topics more related to basic research. Moreover, an overview on gastrointestinal stromal tumors was provided too, although here not discussed. Here we will discuss some topics related to molecular biology of gastric cancer (GC), inherent to prognostic, diagnostic and therapeutic tools shown at the conference. Results about well known subjects, such as E-cadherin loss of expression/function, were presented. They revealed that other mutations of the gene were identified, showing a continuous research to improve diagnosis and prognosis of stomach tumor. Simultaneously, new possible molecular markers with an established role for other neoplasms, were discussed, such as mesothelin, stomatin-like protein 2 and Notch-1. Hence, a wide overview including both old and new diagnostic/prognostic tools was offered. Great attention was also dedicated to possible drugs to be used against GC. They included monoclonal antibodies, such as MS57-2.1, drugs used in other pathologies, such as maraviroc, and natural extracts from plants such as biflorin. We would like to contribute to summarize the most impressive studies presented at the IGCC, concerning novel findings about molecular biology of gastric cancer. Although further investigations will be necessary, it can be inferred that more and more tools were developed, so as to better face stomach neoplasms.
PMCID: PMC4112895  PMID: 25083072
Gastric cancer; Prognostic tools; Markers; Therapy
11.  Using Avatars to Model Weight Loss Behaviors: Participant Attitudes and Technology Development 
Virtual reality and other avatar-based technologies are potential methods for demonstrating and modeling weight loss behaviors. This study examined avatar-based technology as a tool for modeling weight loss behaviors.
This study consisted of two phases: (1) an online survey to obtain feedback about using avatars for modeling weight loss behaviors and (2) technology development and usability testing to create an avatar-based technology program for modeling weight loss behaviors.
Results of phase 1 (n = 128) revealed that interest was high, with 88.3% stating that they would participate in a program that used an avatar to help practice weight loss skills in a virtual environment. In phase 2, avatars and modules to model weight loss skills were developed. Eight women were recruited to participate in a 4-week usability test, with 100% reporting they would recommend the program and that it influenced their diet/exercise behavior. Most women (87.5%) indicated that the virtual models were helpful. After 4 weeks, average weight loss was 1.6 kg (standard deviation = 1.7).
This investigation revealed a high level of interest in an avatar-based program, with formative work indicating promise. Given the high costs associated with in vivo exposure and practice, this study demonstrates the potential use of avatar-based technology as a tool for modeling weight loss behaviors.
PMCID: PMC3879772  PMID: 23911189
eating behavior; exercise behavior; intervention; models; obesity; overweight
12.  FAS/FASL are dysregulated in chordoma and their loss-of-function impairs zebrafish notochord formation 
Oncotarget  2014;5(14):5712-5724.
Chordoma is a rare malignant tumor that recapitulates the notochord phenotype and is thought to derive from notochord remnants not correctly regressed during development. Apoptosis is necessary for the proper notochord development in vertebrates, and the apoptotic pathway mediated by Fas and Fasl has been demonstrated to be involved in notochord cells regression. This study was conducted to investigate the expression of FAS/FASL pathway in a cohort of skull base chordomas and to analyze the role of fas/fasl homologs in zebrafish notochord formation. FAS/FASL expression was found to be dysregulated in chordoma leading to inactivation of the downstream Caspases in the samples analyzed. Both fas and fasl were specifically expressed in zebrafish notochord sorted cells. fas and fasl loss-of-function mainly resulted in larvae with notochord multi-cell-layer jumps organization, larger vacuolated notochord cells, defects in the peri-notochordal sheath structure and in vertebral mineralization. Interestingly, we observed the persistent expression of ntla and col2a1a, the zebrafish homologs of the human T gene and COL2A1 respectively, which are specifically up-regulated in chordoma. These results demonstrate for the first time the dysregulation of FAS/FASL in chordoma and their role in notochord formation in the zebrafish model, suggesting their possible implication in chordoma onset.
PMCID: PMC4170636  PMID: 25071022
chordoma; FAS; FASL; notochord; zebrafish
13.  Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity 
Oncotarget  2014;5(10):3039-3054.
Multiple myeloma (MM) cells induce relevant angiogenic effects within the human bone marrow milieu (huBMM) by the aberrant expression of angiogenic factors. Hypoxia triggers angiogenic events within the huBMM and the transcription factor hypoxia-inducible factor-1α (HIF-1α) is over-expressed by MM cells. Since synthetic miR-199a-5p mimics negatively regulates HIF-1α, we here investigated a miRNA-based therapeutic strategy against hypoxic MM cells. We indeed found that enforced expression of miR-199a-5p led to down-modulated expression of HIF-1α as well as of other pro-angiogenic factors such as VEGF-A, IL-8, and FGFb in hypoxic MM cells in vitro. Moreover, miR-199a-5p negatively affected MM cells migration, while it increased the adhesion of MM cells to bone marrow stromal cells (BMSCs) in hypoxic conditions. Furthermore, transfection of MM cells with miR-199a-5p significantly impaired also endothelial cells migration and down-regulated the expression of endothelial adhesion molecules such as VCAM-1 and ICAM-1. Finally, we identified a hypoxia/AKT/miR-199a-5p loop as a potential molecular mechanism responsible of miR-199a-5p down-regulation in hypoxic MM cells. Taken together our results indicate that miR-199a-5p has an important role for the pathogenesis of MM and support the hypothesis that targeting angiogenesis via a miRNA/HIF-1α pathway may represent a novel potential therapeutical approach for this still lethal disease.
PMCID: PMC4102790  PMID: 24839982
miR-199-5p; microRNA; miRNA; multiple myeloma; plasma cell leukemia; microenviroment; hypoxia; angiogenesis
14.  Establishment and validation of circulating tumor cell-based prognostic nomograms in first-line metastatic breast cancer patients 
Circulating tumor cells (CTC) represent a new outcome-associated biomarker independently from known prognostic factors in metastatic breast cancer (MBC). The objective here was to develop and validate nomograms that combined baseline CTC counts and the other prognostic factors to assess the outcome of individual patients starting first-line treatment for MBC.
Experimental Design
We used a training set of 236 MBC patients starting a first-line treatment from the MD Anderson Cancer Center to establish nomograms that calculated the predicted probability of survival at different time points: 1, 2, and 5 years for overall survival (OS) and 6 months and 1 and 2 years for progression-free survival (PFS). The covariates computed in the model were: age, disease subtype, visceral metastases, performance status, and CTC counts by CellSearch. Nomograms were independently validated with 210 MBC patients from the Institut Curie who underwent first-line chemotherapy. The discriminatory ability and accuracy of the models were assessed using Harrell’s c-statistic and calibration plots at different time points in both training and validation datasets.
Median follow-up was of 23 and 29 months in the MD Anderson and Institut Curie cohorts, respectively. Nomograms demonstrated good C-statistics: 0.74 for OS and 0.65 for PFS and discriminated OS prediction at 1, 2, and 5 years, and PFS prediction at 6 months and 1 and 2 years.
Nomograms, which relied on CTC counts as a continuous covariate, easily facilitated the use of a web-based tool for estimating survival, supporting treatment-decisions and clinical trial stratification in first-line MBC.
PMCID: PMC3662240  PMID: 23340302
circulating tumor cells; first-line; metastatic breast cancer; nomogram; survival
15.  High Serum miR-19a Levels Are Associated with Inflammatory Breast Cancer and Are Predictive of Favorable Clinical Outcome in Patients with Metastatic HER2+ Inflammatory Breast Cancer 
PLoS ONE  2014;9(1):e83113.
Altered serum microRNA (miRNA) levels may be correlated with a dysregulated expression pattern in parental tumor tissue and reflect the clinical evolution of disease. The overexpression of miR-21, miR-10b, and miR-19a is associated with the acquisition of malignant characteristics (increased tumor cell proliferation, migration, invasion, dissemination, and metastasis); thus, we determined their utility as serum biomarkers for aggressive breast cancer (HER2-overexpressed or -amplified [HER2+] and inflammatory breast cancer [IBC]).
Experimental Design
In this prospective study, we measured miR-21, miR-10b, and miR-19a levels using quantitative reverse transcriptase-polymerase chain reaction in the serum of 113 breast cancer patients and determined their association with clinicopathologic factors and clinical outcome. Thirty healthy donors with no history of cancer were enrolled as controls.
Patients with non-metastatic HER2+ breast cancer had higher serum miR-21 median levels than patients with non-metastatic HER2− disease (p = 0.044); whereas patients with metastatic HER2+ breast cancer had higher serum miR-10b median levels than patients with metastatic HER2− disease (p = 0.0004). There were no significant differences in serum miR-19a median levels between HER2+ and HER2− groups, regardless of the presence of metastases. High serum miR-19a levels were associated with IBC (p = 0.039). Patients with metastatic IBC had significantly higher serum miR-19a median levels than patients with metastatic non-IBC (p = 0.019). Finally, high serum miR-19a levels were associated with longer progression-free survival time (10.3 vs. 3.2 months; p = 0.022) and longer overall survival time (median not reached vs. 11.2 months; p = 0.003) in patients with metastatic HER2+ IBC.
High levels of miR-21 and miR-10b were present in the serum of patients with non-metastatic and metastatic HER2+ breast cancer, respectively. High levels of serum miR-19a may represent a biomarker for IBC that is predictive for favorable clinical outcome in patients with metastatic HER2+ IBC.
PMCID: PMC3885405  PMID: 24416156
16.  Epithelial-Mesenchymal Transition and Stem Cell Markers in Patients with HER2-Positive Metastatic Breast Cancer 
Molecular cancer therapeutics  2012;11(11):2526-2534.
Currently, there is extensive information about circulating tumor cells (CTCs) and their prognostic value; however, little is known about other characteristics of these cells. In this prospective study, we assessed the gene transcripts of epithelial-to-mesenchymal transition inducing transcription factors (EMT-TFs) and cancer stem cell features in HER2+ metastatic breast cancer (MBC) patients. Epithelial cells were enriched from peripheral blood mononuclear cells (PBMCs) using antibody-coated anti-CD326 antibody (CD326+) magnetic beads, and the residual CD326− PBMCs were further depleted of leukocytes using anti-CD45 antibody-coated magnetic beads (CD326−CD45−). RNA was extracted from all cell fractions, reverse transcribed to cDNA, and subjected to quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to detect EMT-TFs (TWIST1, SNAIL1, ZEB1, and TG2) as a measure of CTCs undergoing EMT (EMT-CTCs). Additionally, PBMCs were analyzed using multi-parameter flow cytometry for ALDH activity and cancer stem cells (CSCs) that express CD24, CD44, and CD133. Twenty-eight patients were included in this study. At least one EMT-TF mRNA was elevated in the CTCs of 88.2% of patients and in the CD326−CD45− cell fraction of 60.7% of patients. The CD326−CD45− fraction of patients with elevated SNAIL1 and ZEB1 transcripts also had a higher percentage of ALDH+/CD133+ cells in their blood than did patients with normal SNAIL1 and ZEB1 expression (P=0.038). Our data indicate that HER2+ MBC patients have EMT-CTCs. Moreover, an enrichment of cancer stem cells was found in CD326−CD45− cells. Additional studies are needed to determine whether EMT-CTCs and CSCs have prognostic value in HER2+ MBC patients treated with trastuzumab-based therapy.
PMCID: PMC3500676  PMID: 22973057
circulating tumor cells; epithelial to mesenchymal transition; stem cells; HER2; CD133; metastatic breast cancer
17.  The ablation of EZH2 uncovers its crucial role in rhabdomyosarcoma formation 
Cell Cycle  2012;11(20):3828-3836.
Rhabdomyosarcoma (RMS) is a pediatric tumor that arises from muscle precursor cells. RMS cells express several markers of early myogenic differentiation, but they fail to complete both differentiation program and cell cycle arrest, resulting in uncontrolled proliferation and incomplete myogenesis. Previous studies showed that EZH2, which is involved in both differentiation and cancer progression, is overexpressed in RMS, but a functional binding between its expression and its functional role in tumor formation or progression has not yet been demonstrated. We hypothesized that EZH2 is a key regulator of muscular differentiation program in RMS cells.
In this study, we demonstrated that EZH2 directly binds muscle specific genes in RD cells. Silencing of EZH2 promotes the recruitment of a multiprotein complex at muscle-specific promoters, their transcriptional activation and protein expression. Moreover, we demonstrated that EZH2 is directly involved in transcriptional repression of MyoD, the main factor promoting myogenesis. EZH2 ablation induces MyoD activation the recovery of its binding on muscle-specific genes.
PMCID: PMC3495825  PMID: 22983009
PRC complex; EZH2; MyoD; rhabdomyosarcoma; myogenesis
18.  Androgen receptor serine 81 mediates Pin1 interaction and activity 
Cell Cycle  2012;11(18):3415-3420.
Hormone-dependent tumors are characterized by deregulated activity of specific steroid receptors, allowing aberrant expression of many genes involved in cancer initiation, progression and metastasis. In prostate cancer, the androgen receptor (AR) protein has pivotal functions, and over the years it has been the target of different drugs. AR is a nuclear receptor whose activity is regulated by a phosphorylation mechanism controlled by hormone and growth factors. Following phosphorylation, AR interacts with many cofactors that closely control its function. Among such cofactors, Pin1 is a peptidyl-prolyl isomerase that is involved in the control of protein phosphorylation and has a prognostic value in prostate cancer. In the present study, we demonstrate that ARSer81 is involved in the interaction with Pin1, and that this interaction is important for the transcriptional activity of AR. Since Pin1 expression positively correlates with tumor grade, our results suggest that Pin1 can participate in this process by modulating AR function.
PMCID: PMC3466552  PMID: 22894932
ARSer81; Pin1; androgen receptor; phosphorylation; prostate cancer
19.  Vitamin D Supplementation and Breast Cancer Prevention: A Systematic Review and Meta-Analysis of Randomized Clinical Trials 
PLoS ONE  2013;8(7):e69269.
In recent years, the scientific evidence linking vitamin D status or supplementation to breast cancer has grown notably. To investigate the role of vitamin D supplementation on breast cancer incidence, we conducted a systematic review and meta-analysis of randomized controlled trials comparing vitamin D with placebo or no treatment. We used OVID to search MEDLINE (R), EMBASE and CENTRAL until April 2012. We screened the reference lists of included studies and used the “Related Article” feature in PubMed to identify additional articles. No language restrictions were applied. Two reviewers independently extracted data on methodological quality, participants, intervention, comparison and outcomes. Risk Ratios and 95% Confident Intervals for breast cancer were pooled using a random-effects model. Heterogeneity was assessed using the I2 test. In sensitivity analysis, we assessed the impact of vitamin D dosage and mode of administration on treatment effects. Only two randomized controlled trials fulfilled the pre-set inclusion criteria. The pooled analysis included 5372 postmenopausal women. Overall, Risk Ratios and 95% Confident Intervals were 1.11 and 0.74–1.68. We found no evidence of heterogeneity. Neither vitamin D dosage nor mode of administration significantly affected breast cancer risk. However, treatment efficacy was somewhat greater when vitamin D was administered at the highest dosage and in combination with calcium (Risk Ratio 0.58, 95% Confident Interval 0.23–1.47 and Risk Ratio 0.93, 95% Confident Interval 0.54–1.60, respectively). In conclusions, vitamin D use seems not to be associated with a reduced risk of breast cancer development in postmenopausal women. However, the available evidence is still limited and inadequate to draw firm conclusions. Study protocol code: FARM8L2B5L.
PMCID: PMC3718745  PMID: 23894438
20.  pRb controls Estrogen Receptor alpha protein stability and activity 
Oncotarget  2013;4(6):875-883.
A cross talk between the Estrogen Receptor (ESR1) and the Retinoblastoma (pRb) pathway has been demonstrated to influence the therapeutic response of breast cancer patients but the full mechanism remains poorly understood. Here we show that the N-terminal domain of pRb interacts with the CD domain of ESR1 to allow for the assembly of intermediate complex chaperone proteins HSP90 and p23. We demonstrated that a loss of pRb in human/mouse breast cells decreases the expression of the ESR1 protein through the proteasome pathway. Our work reveals a novel regulatory mechanism of ESR1 basal turnover and activity and an unanticipated relationship with the pRb tumor suppressor.
PMCID: PMC3757244  PMID: 23900261
pRb; Estrogen receptor alpha; proteasome; chaperone proteins; breast cancer
22.  Homeostasis model assessment to detect insulin resistance and identify patients at high risk of breast cancer development: National Cancer Institute of Naples experience 
Metabolic Syndrome (MS) has been correlated to breast carcinogenesis. MS is common in the general population (34%) and increases with age and body mass index. Although the link between obesity, MS and hormone related cancer incidence is now widely recognized, the molecular mechanisms at the basis of such increase are still poorly characterized. A crucial role is supposed to be played by the altered insulin signalling, occurring in obese patients, which fuels cancer cell growth, proliferation and survival. Therefore we focused specifically on insulin resistance to investigate clinically the potential role of insulin in breast carcinogenesis.
975 patients were enrolled and the association between MS, insulin resistance, and breast cancer was evaluated. Women were stratified by age and menopausal status. Insulin resistance was measured through the Homeostasis Model Assessment score (HOMA-IR). The cut off value to define insulin resistance was HOMA-IR ≥ 2.50.
Higher prevalence of MS (35%) was found among postmenopausal women with breast cancer compared to postmenopausal healthy women (19%) [OR 2.16]. A broad range of BMI spanning 19–48 Kg/m2 was calculated. Both cases and controls were characterized by BMI ≥ 25 Kg/m2 (58% of cases compared to 61% of controls). Waist circumference >88 cm was measured in 53% of cases - OR 1.58- (95% CI 0.8-2.8) and in 46% of controls. Hyperinsulinemia was detected in 7% of cases – OR 2.14 (95% CI 1.78-2.99) and only in 3% of controls. HOMA-IR score was elevated in 49% of cases compared to 34% of controls [OR 1.86], suggesting that insulin resistance can nearly double the risk of breast cancer development. Interestingly 61% of women operated for breast cancer (cases) with HOMA-IR ≥ 2.5 presented subclinical insulin resistance with fasting plasma glucose levels and fasting plasma insulin levels in the normal range. Both android fat distribution and insulin resistance correlated to MS in the subgroup of postmenopausal women affected by breast cancer.
Our results further support the hypothesis that MS, in particular insulin resistance and abdominal fat, can be considered as risk factors for developing breast cancer after menopause. We suggest that HOMA-IR, rather than fasting plasma glucose and fasting plasma insulin levels alone, could be a valuable tool to identify patients with subclinical insulin resistance, which could be relevant for primary prevention and for high risk patient screening.
PMCID: PMC3622613  PMID: 23497533
Metabolic syndrome; Insulin resistance; Breast cancer; Postmenopausal; HOMA-IR
23.  Expression of Epithelial-Mesenchymal Transition-Inducing Transcription Factors in Primary Breast Cancer: The Effect of Neoadjuvant Therapy 
Epithelial cancer cells are likely to undergo epithelial mesenchymal transition (EMT) prior to entering the peripheral circulation. By undergoing EMT, circulating tumor cells (CTCs) lose epithelial markers and may escape detection by conventional methods. Therefore, we conducted a pilot study to investigate mRNA transcripts of EMT-inducing transcription factors (TFs) in tumor cells from the peripheral blood (PB) of primary breast cancer (PBC) patients.
Peripheral blood mononuclear cells were isolated from 52 stages I–III PBC patients and 30 healthy donors (HD) and sequentially depleted of EpCAM+ cells and CD45+ leukocytes, henceforth referred to as CD45−. The expression levels of EMT-inducing TFs (TWIST1, SNAIL1, SLUG, ZEB1, and FOXC2) in the CD45− cells were determined using qRT-PCR. The highest level of expression by the CD45− cell fraction of HD was used as “cut off” to determine if samples from PBC patients overexpressed any EMT-inducing TFs. In total, 15.4% of PBC patients overexpressed at least one of the EMT-inducing TF transcripts. Overexpression of any EMT-inducing TF transcripts was more likely to be detected in PBC patients who received neoadjuvant therapies (NAT) than patients who received no NAT (P = 0.003). Concurrently, CTCs were detected in 7 out of 38 (18.4%) patients by CellSearch® and 15 out of 42 (35.7%) patients by AdnaTest™. There was no association between the presence of CTCs measured by CellSearch® or AdnaTest™.
In summary, our results demonstrate that CTCs with EMT phenotype may occur in the peripheral circulation of PBC patients and NAT is unable to eliminate CTCs undergoing EMT.
PMCID: PMC3169728  PMID: 21387303
circulating tumor cells; epithelial-mesenchymal transition; primary breast cancer; neoadjuvant therapy
24.  The vascular endothelium of the adipose tissue give rise to both white and brown fat cells 
Cell Metabolism  2012;15(2):222-229.
Adipose tissue expansion involves the enlargement of existing adipocytes, the formation of new cells from committed preadipocytes, and the coordinated development of the tissue vascular network. Here we find that murine endothelial cells (EC) of classic white and brown fat depots share ultrastructural characteristics with pericytes, which are pluripotent and can potentially give rise to preadipocytes. Lineage tracing experiments using the VE-cadherin promoter reveal localization of reporter genes in EC, and also in preadipocytes and adipocytes of white and brown fat depots. Furthermore, capillary sprouts from human adipose tissue, which have predominantly EC characteristics, are found to express Zfp423, a recently identified marker of preadipocyte determination. In response to PPARγ activation, endothelial characteristics of sprouting cells are progressively lost, and cells form structurally and biochemically defined adipocytes. Together these data support an endothelial origin of murine and human adipocytes, suggesting a model for how adipogenesis and angiogenesis are coordinated during adipose tissue expansion.
PMCID: PMC3278718  PMID: 22326223
adipose stem cells; preadipocytes; adipogenesis; white adipose tissue; electron microscopy; in vivo lineage tracing; adipose tissue explants
25.  The Prolyl Isomerase Pin1 Acts Synergistically with CDK2 to Regulate the Basal Activity of Estrogen Receptor α in Breast Cancer 
PLoS ONE  2013;8(2):e55355.
In hormone receptor-positive breast cancers, most tumors in the early stages of development depend on the activity of the estrogen receptor and its ligand, estradiol. Anti-estrogens, such as tamoxifen, have been used as the first line of therapy for over three decades due to the fact that they elicit cell cycle arrest. Unfortunately, after an initial period, most cells become resistant to hormonal therapy. Peptidylprolyl isomerase 1 (Pin1), a protein overexpressed in many tumor types including breast, has been demonstrated to modulate ERalpha activity and is involved in resistance to hormonal therapy. Here we show a new mechanism through which CDK2 drives an ERalpha-Pin1 interaction under hormone- and growth factor-free conditions. The PI3K/AKT pathway is necessary to activate CDK2, which phosphorylates ERalphaSer294, and mediates the binding between Pin1 and ERalpha. Site-directed mutagenesis demonstrated that ERalphaSer294 is essential for Pin1-ERalpha interaction and modulates ERalpha phosphorylation on Ser118 and Ser167, dimerization and activity. These results open up new drug treatment opportunities for breast cancer patients who are resistant to anti-estrogen therapy.
PMCID: PMC3563590  PMID: 23390529

Results 1-25 (63)