PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (39)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease 
Holmans, Peter | Moskvina, Valentina | Jones, Lesley | Sharma, Manu | Vedernikov, Alexey | Buchel, Finja | Sadd, Mohamad | Bras, Jose M. | Bettella, Francesco | Nicolaou, Nayia | Simón-Sánchez, Javier | Mittag, Florian | Gibbs, J. Raphael | Schulte, Claudia | Durr, Alexandra | Guerreiro, Rita | Hernandez, Dena | Brice, Alexis | Stefánsson, Hreinn | Majamaa, Kari | Gasser, Thomas | Heutink, Peter | Wood, Nicholas W. | Martinez, Maria | Singleton, Andrew B. | Nalls, Michael A. | Hardy, John | Morris, Huw R. | Williams, Nigel M. | Arepalli, Sampath | Barker, Roger | Barrett, Jeffrey | Ben-Shlomo, Yoav | Berendse, Henk W. | Berg, Daniela | Bhatia, Kailash | de Bie, Rob M.A. | Biffi, Alessandro | Bloem, Bas | Brice, Alexis | Bochdanovits, Zoltan | Bonin, Michael | Bras, Jose M. | Brockmann, Kathrin | Brooks, Janet | Burn, David J. | Charlesworth, Gavin | Chen, Honglei | Chinnery, Patrick F. | Chong, Sean | Clarke, Carl E. | Cookson, Mark R. | Cooper, Jonathan M. | Corvol, Jen-Christophe | Counsell, Carl | Damier, Philippe | Dartigues, Jean Francois | Deloukas, Panagiotis | Deuschl, Günther | Dexter, David T. | van Dijk, Karin D. | Dillman, Allissa | Durif, Frank | Durr, Alexandra | Edkins, Sarah | Evans, Jonathan R. | Foltynie, Thomas | Gao, Jianjun | Gardner, Michelle | Gasser, Thomas | Gibbs, J. Raphael | Goate, Alison | Gray, Emma | Guerreiro, Rita | Gústafsson, Ómar | Hardy, John | Harris, Clare | Hernandez, Dena G. | Heutink, Peter | van Hilten, Jacobus J. | Hofman, Albert | Hollenbeck, Albert | Holmans, Peter | Holton, Janice | Hu, Michele | Huber, Heiko | Hudson, Gavin | Hunt, Sarah E. | Huttenlocher, Johanna | Illig, Thomas | Langford, Cordelia | Lees, Andrew | Lesage, Suzanne | Lichtner, Peter | Limousin, Patricia | Lopez, Grisel | Lorenz, Delia | Martinez, Maria | McNeill, Alisdair | Moorby, Catriona | Moore, Matthew | Morris, Huw | Morrison, Karen E. | Moskvina, Valentina | Mudanohwo, Ese | Nalls, Michael A. | Pearson, Justin | Perlmutter, Joel S. | Pétursson, Hjörvar | Plagnol, Vincent | Pollak, Pierre | Post, Bart | Potter, Simon | Ravina, Bernard | Revesz, Tamas | Riess, Olaf | Rivadeneira, Fernando | Rizzu, Patrizia | Ryten, Mina | Saad, Mohamad | Sawcer, Stephen | Schapira, Anthony | Scheffer, Hans | Sharma, Manu | Shaw, Karen | Sheerin, Una-Marie | Shoulson, Ira | Schulte, Claudia | Sidransky, Ellen | Simón-Sánchez, Javier | Singleton, Andrew B. | Smith, Colin | Stefánsson, Hreinn | Stefánsson, Kári | Steinberg, Stacy | Stockton, Joanna D. | Sveinbjornsdottir, Sigurlaug | Talbot, Kevin | Tanner, Carlie M. | Tashakkori-Ghanbaria, Avazeh | Tison, François | Trabzuni, Daniah | Traynor, Bryan J. | Uitterlinden, André G. | Velseboer, Daan | Vidailhet, Marie | Walker, Robert | van de Warrenburg, Bart | Wickremaratchi, Mirdhu | Williams, Nigel | Williams-Gray, Caroline H. | Winder-Rhodes, Sophie | Wood, Nicholas
Human Molecular Genetics  2012;22(5):1039-1049.
Parkinson's disease (PD) is the second most common neurodegenerative disease affecting 1–2% in people >60 and 3–4% in people >80. Genome-wide association (GWA) studies have now implicated significant evidence for association in at least 18 genomic regions. We have studied a large PD-meta analysis and identified a significant excess of SNPs (P < 1 × 10−16) that are associated with PD but fall short of the genome-wide significance threshold. This result was independent of variants at the 18 previously implicated regions and implies the presence of additional polygenic risk alleles. To understand how these loci increase risk of PD, we applied a pathway-based analysis, testing for biological functions that were significantly enriched for genes containing variants associated with PD. Analysing two independent GWA studies, we identified that both had a significant excess in the number of functional categories enriched for PD-associated genes (minimum P = 0.014 and P = 0.006, respectively). Moreover, 58 categories were significantly enriched for associated genes in both GWA studies (P < 0.001), implicating genes involved in the ‘regulation of leucocyte/lymphocyte activity’ and also ‘cytokine-mediated signalling’ as conferring an increased susceptibility to PD. These results were unaltered by the exclusion of all 178 genes that were present at the 18 genomic regions previously reported to be strongly associated with PD (including the HLA locus). Our findings, therefore, provide independent support to the strong association signal at the HLA locus and imply that the immune-related genetic susceptibility to PD is likely to be more widespread in the genome than previously appreciated.
doi:10.1093/hmg/dds492
PMCID: PMC3561909  PMID: 23223016
2.  Large-scale replication and heterogeneity in Parkinson disease genetic loci 
Sharma, Manu | Ioannidis, John P.A. | Aasly, Jan O. | Annesi, Grazia | Brice, Alexis | Van Broeckhoven, Christine | Bertram, Lars | Bozi, Maria | Crosiers, David | Clarke, Carl | Facheris, Maurizio | Farrer, Matthew | Garraux, Gaetan | Gispert, Suzana | Auburger, Georg | Vilariño-Güell, Carles | Hadjigeorgiou, Georgios M. | Hicks, Andrew A. | Hattori, Nobutaka | Jeon, Beom | Lesage, Suzanne | Lill, Christina M. | Lin, Juei-Jueng | Lynch, Timothy | Lichtner, Peter | Lang, Anthony E. | Mok, Vincent | Jasinska-Myga, Barbara | Mellick, George D. | Morrison, Karen E. | Opala, Grzegorz | Pramstaller, Peter P. | Pichler, Irene | Park, Sung Sup | Quattrone, Aldo | Rogaeva, Ekaterina | Ross, Owen A. | Stefanis, Leonidas | Stockton, Joanne D. | Satake, Wataru | Silburn, Peter A. | Theuns, Jessie | Tan, Eng-King | Toda, Tatsushi | Tomiyama, Hiroyuki | Uitti, Ryan J. | Wirdefeldt, Karin | Wszolek, Zbigniew | Xiromerisiou, Georgia | Yueh, Kuo-Chu | Zhao, Yi | Gasser, Thomas | Maraganore, Demetrius | Krüger, Rejko | Boyle, R.S | Sellbach, A | O'Sullivan, J.D. | Sutherland, G.T. | Siebert, G.A | Dissanayaka, N.N.W | Van Broeckhoven, Christine | Theuns, Jessie | Crosiers, David | Pickut, Barbara | Engelborghs, Sebastiaan | Meeus, Bram | De Deyn, Peter P. | Cras, Patrick | Rogaeva, Ekaterina | Lang, Anthony E | Agid, Y | Anheim, M | Bonnet, A-M | Borg, M | Brice, A | Broussolle, E | Corvol, JC | Damier, P | Destée, A | Dürr, A | Durif, F | Lesage, S | Lohmann, E | Pollak, P | Rascol, O | Tison, F | Tranchant, C | Viallet, F | Vidailhet, M | Tzourio, Christophe | Amouyel, Philippe | Loriot, Marie-Anne | Mutez, Eugénie | Duflot, Aurélie | Legendre, Jean-Philippe | Waucquier, Nawal | Gasser, Thomas | Riess, Olaf | Berg, Daniela | Schulte, Claudia | Klein, Christine | Djarmati, Ana | Hagenah, Johann | Lohmann, Katja | Auburger, Georg | Hilker, Rüdiger | van de Loo, Simone | Dardiotis, Efthimios | Tsimourtou, Vaia | Ralli, Styliani | Kountra, Persa | Patramani, Gianna | Vogiatzi, Cristina | Hattori, Nobutaka | Tomiyama, Hiroyuki | Funayama, Manabu | Yoshino, Hiroyo | Li, Yuanzhe | Imamichi, Yoko | Toda, Tatsushi | Satake, Wataru | Lynch, Tim | Gibson, J. Mark | Valente, Enza Maria | Ferraris, Alessandro | Dallapiccola, Bruno | Ialongo, Tamara | Brighina, Laura | Corradi, Barbara | Piolti, Roberto | Tarantino, Patrizia | Annesi, Ferdinanda | Jeon, Beom S. | Park, Sung-Sup | Aasly, J | Opala, Grzegorz | Jasinska-Myga, Barbara | Klodowska-Duda, Gabriela | Boczarska-Jedynak, Magdalena | Tan, Eng King | Belin, Andrea Carmine | Olson, Lars | Galter, Dagmar | Westerlund, Marie | Sydow, Olof | Nilsson, Christer | Puschmann, Andreas | Lin, JJ | Maraganore, Demetrius M. | Ahlskog, J, Eric | de Andrade, Mariza | Lesnick, Timothy G. | Rocca, Walter A. | Checkoway, Harvey | Ross, Owen A | Wszolek, Zbigniew K. | Uitti, Ryan J.
Neurology  2012;79(7):659-667.
Objective:
Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown.
Methods:
Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry.
Results:
In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78–0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14–1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I2 estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD.
Conclusion:
Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity. Neurology® 2012;79:659–667
doi:10.1212/WNL.0b013e318264e353
PMCID: PMC3414661  PMID: 22786590
4.  Genetic comorbidities in Parkinson’s disease 
Human molecular genetics  2013;23(3):831-841.
Parkinson’s disease (PD) has a number of known genetic risk factors. Clinical and epidemiological studies have suggested the existence of intermediate factors that may be associated with additional risk of PD. We construct genetic risk profiles for additional epidemiological and clinical factors using known genome-wide association studies (GWAS) loci related to these specific phenotypes to estimate genetic comorbidity in a systematic review. We identify genetic risk profiles based on GWAS variants associated with schizophrenia and Crohn’s disease as significantly associated with risk of PD. Conditional analyses adjusting for SNPs near loci associated with PD and schizophrenia or PD and Crohn’s disease suggest that spatially overlapping loci associated with schizophrenia and PD account for most of the shared comorbidity, while variation outside of known proximal loci shared by PD and Crohn’s disease accounts for their shared genetic comorbidity. We examine brain methylation and expression signatures proximal to schizophrenia and Crohn’s disease loci to infer functional changes in the brain associated with the variants contributing to genetic comorbidity. We compare our results with a systematic review of epidemiological literature, while the findings are dissimilar to a degree; marginal genetic associations corroborate the directionality of associations across genetic and epidemiological data. We show a strong genetically defined level of comorbidity between PD and Crohn’s disease as well as between PD and schizophrenia, with likely functional consequences of associated variants occurring in brain.
doi:10.1093/hmg/ddt465
PMCID: PMC3888265  PMID: 24057672
5.  Time to Redefine PD? Introductory Statement of the MDS Task Force on the Definition of Parkinson’s Disease 
With advances in knowledge disease, boundaries may change. Occasionally, these changes are of such a magnitude that they require redefinition of the disease. In recognition of the profound changes in our understanding of Parkinson’s disease (PD), the International Parkinson and Movement Disorders Society (MDS) commissioned a task force to consider a redefinition of PD. This review is a discussion article, intended as the introductory statement of the task force. Several critical issues were identified that challenge current PD definitions. First, new findings challenge the central role of the classical pathologic criteria as the arbiter of diagnosis, notably genetic cases without synuclein deposition, the high prevalence of incidental Lewy body (LB) deposition, and the nonmotor prodrome of PD. It remains unclear, however, whether these challenges merit a change in the pathologic gold standard, especially considering the limitations of alternate gold standards. Second, the increasing recognition of dementia in PD challenges the distinction between diffuse LB disease and PD. Consideration might be given to removing dementia as an exclusion criterion for PD diagnosis. Third, there is increasing recognition of disease heterogeneity, suggesting that PD subtypes should be formally identified; however, current subtype classifications may not be sufficiently robust to warrant formal delineation. Fourth, the recognition of a nonmotor prodrome of PD requires that new diagnostic criteria for early-stage and prodromal PD should be created; here, essential features of these criteria are proposed. Finally, there is a need to create new MDS diagnostic criteria that take these changes in disease definition into consideration.
doi:10.1002/mds.25844
PMCID: PMC4204150  PMID: 24619848
redefinition of PD; gold standard; subtypes; disease heterogeneity; nonmotor prodrome; MDS diagnostic criteria
6.  Seven Hours to Adequate Antimicrobial Therapy in Urosepsis Using Isothermal Microcalorimetry 
Journal of Clinical Microbiology  2014;52(2):624-626.
Urosepsis can progress toward severe sepsis, septic shock, and, ultimately, death. Rapid antimicrobial susceptibility testing is crucial to decrease mortality and morbidity. This report shows that isothermal microcalorimetry can provide an antibiogram within 7 h with a sensitivity of 95% and specificity of 91% using Vitek-2 system as a reference.
doi:10.1128/JCM.02374-13
PMCID: PMC3911308  PMID: 24478498
8.  Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers 
Brain  2014;137(9):2480-2492.
Mutations in the gene encoding the dopamine-synthetic enzyme GTP cyclohydrolase-1 (GCH1) cause DOPA-responsive dystonia (DRD). Mencacci et al. demonstrate that GCH1 variants are associated with an increased risk of Parkinson's disease in both DRD pedigrees and in patients with Parkinson's disease but without a family history of DRD.
GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson’s disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson’s disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson’s disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher’s exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4–25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson’s disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson’s disease.
doi:10.1093/brain/awu179
PMCID: PMC4132650  PMID: 24993959
GCH1; DOPA-responsive-dystonia; Parkinson’s disease; dopamine; exome sequencing
9.  A novel mutation in LRSAM1 causes axonal Charcot-Marie-Tooth disease with dominant inheritance 
BMC Neurology  2014;14:118.
Background
Charcot-Marie-Tooth disease (CMT) refers to a heterogeneous group of genetic motor and sensory neuropathies. According to the primary site of damage, a distinction is made between demyelinating and axonal forms (CMT1 and 2, respectively, when inherited as an autosomal dominant trait). Leucine-rich repeat and sterile alpha motif-containing protein 1 (LRSAM1) is a ubiquitin-protein ligase with a role in sorting internalised cell-surface receptor proteins. So far, mutations in the LRSAM1 gene have been shown to cause axonal CMT in three different families and can confer either dominant or recessive transmission of the disease.
Case presentation
We have identified a novel mutation in LRSAM1 in a small family with dominant axonal CMT. Electrophysiological studies show evidence of a sensory axonal neuropathy and are interesting in so far as giant motor unit action potentials (MUAPs) are present on needle electromyography (EMG), while motor nerve conduction studies including compound motor action potential (CMAP) amplitudes are completely normal. The underlying mutation c.2046+1G >T results in the loss of a splice donor site and the inclusion of 63 additional base pairs of intronic DNA into the aberrantly spliced transcript. This disrupts the catalytically active RING (Really Interesting New Gene) domain of LRSAM1.
Conclusions
Our findings suggest that, beyond the typical length-dependent degeneration of motor axons, damage of cell bodies in the anterior horn might play a role in LRSAM1-associated neuropathies. Moreover, in conjunction with other data in the literature, our results support a model, by which disruption of the C-terminal RING domain confers dominant negative properties to LRSAM1.
doi:10.1186/1471-2377-14-118
PMCID: PMC4060843  PMID: 24894446
Axonal CMT; LRSAM1; Anterior horn cell disease; Splice site mutation; RING domain; Exome sequencing
10.  Single-Cell Expression Profiling of Dopaminergic Neurons Combined with Association Analysis Identifies Pyridoxal Kinase as Parkinson’s Disease Gene 
Annals of neurology  2009;66(6):792-798.
Objective
The etiology of Parkinson disease (PD) is complex and multifactorial, with hereditary and environmental factors contributing. Monogenic forms have provided molecular clues to disease mechanisms but genetic modifiers of idiopathic PD are still to be determined.
Methods
We carried out whole-genome expression profiling of isolated human substantia nigra (SN) neurons from patients with PD vs. controls followed by association analysis of tagging single-nucleotide polymorphisms (SNPs) in differentially regulated genes. Association was investigated in a German PD sample and confirmed in Italian and British cohorts.
Results
We identified four differentially expressed genes located in PD candidate pathways, ie, MTND2 (mitochondrial, p = 7.14 × 10−7), PDXK (vitamin B6/dopamine metabolism, p = 3.27 × 10−6), SRGAP3 (axon guidance, p = 5.65 × 10−6), and TRAPPC4 (vesicle transport, p = 5.81 × 10−6). We identified a DNA variant (rs2010795) in PDXK associated with an increased risk of PD in the German cohort (p = 0.00032). This association was confirmed in the British (p = 0.028) and Italian (p = 0.0025) cohorts individually and reached a combined value of p = 1.2 × 10−7 (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.18–1.44).
Interpretation
We provide an example of how microgenomic genome-wide expression studies in combination with association analysis can aid to identify genetic modifiers in neurodegenerative disorders. The detection of a genetic variant in PDXK, together with evidence accumulating from clinical studies, emphasize the impact of vitamin B6 status and metabolism on disease risk and therapy in PD.
doi:10.1002/ana.21780
PMCID: PMC4034432  PMID: 20035503
12.  Comparable Autoantibody Serum Levels against Amyloid- and Inflammation-Associated Proteins in Parkinson’s Disease Patients and Controls 
PLoS ONE  2014;9(2):e88604.
Naturally occurring autoantibodies (NAbs) against a number of potentially disease-associated cellular proteins, including Amyloid-beta1–42 (Abeta1–42), Alpha-synuclein (Asyn), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), and S100 calcium binding protein B (S100B) have been suggested to be associated with neurodegenerative disorders, in particular Alzheimer’s (AD) and Parkinson’s disease (PD). Whereas the (reduced) occurrence of specific NAbs in AD is widely accepted, previous literature examining the relation of these NAb titres between PD patients and controls, as well as comparing these levels with demographic and clinical parameters in PD patients have produced inconsistent findings. We therefore aimed, in a cross-sectional approach, to determine serum titres of the above NAbs in a cohort of 93 PD patients (31 of them demented) and 194 controls. Levels were correlated with demographic and clinical variables, cerebrospinal fluid Abeta1–42, total tau and phospho-tau levels, as well as with single nucleotide polymorphisms (SNPs) of genes which either have been reported to influence the immune system, the amyloid cascade or the occurrence of PD (ApoE, GSK3B, HLA-DRA, HSPA5, SNCA, and STK39). The investigated NAb titres were neither significantly associated with the occurrence of PD, nor with demographic and clinical parameters, neurodegenerative markers or genetic variables. These results argue against a major potential of blood-borne parameters of the adaptive immune system to serve as trait or state markers in PD.
doi:10.1371/journal.pone.0088604
PMCID: PMC3931625  PMID: 24586351
13.  Genomic investigation of α-Synuclein multiplication and parkinsonism 
Annals of neurology  2008;63(6):10.1002/ana.21380.
Objective
Copy number variation is a common polymorphic phenomenon within the human genome. While the majority of these events are non-deleterious they can also be highly pathogenic. Herein we characterize five families with parkinsonism that have been identified to harbor multiplication of the chromosomal 4q21 locus containing the α-synuclein gene (SNCA).
Methods
A methodological approach employing fluorescent in situ hybridization (FISH) and Affymetrix 250K SNP microarrays (CHIPs) was used to characterize the multiplication in each family and identify the genes encoded within the region. The telomeric and centromeric breakpoints of each family were further narrowed using semi-quantitative PCR with microsatellite markers and then screened for transposable repeat elements.
Results
The severity of clinical presentation is correlated with SNCA dosage and does not appear to be overtly effected by the presence of other genes in the multiplicated region. With the exception of the Lister kindred, in each family the multiplication event appears de novo. The type and position of Alu/LINE repeats are also different at each breakpoint. Microsatellite analysis demonstrates two genomic mechanisms are responsible for chromosome 4q21 multiplications, including both SNCA duplication and triplication.
Interpretation
SNCA dosage is responsible for parkinsonism, autonomic dysfunction and dementia observed within each family. We hypothesize dysregulated expression of wild-type α-synuclein results in parkinsonism and may explain the recent association of common SNCA variants in sporadic Parkinson’s disease. SNCA genomic duplication results from intra-allelic (segmental duplication) or inter-allelic recombination with unequal crossing-over, whereas both mechanisms appear to be required for genomic SNCA triplication.
doi:10.1002/ana.21380
PMCID: PMC3850281  PMID: 18571778
Parkinsonism; SNCA; Genomic multiplication; Alu repeat; Parkinson’s disease
14.  A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies 
JAMA neurology  2013;70(6):10.1001/jamaneurol.2013.1925.
Importance
While mutations in glucocerebrosidase (GBA1) are associated with an increased risk for Parkinson disease (PD), it is important to establish whether such mutations are also a common risk factor for other Lewy body disorders.
Objective
To establish whether GBA1 mutations are a risk factor for dementia with Lewy bodies (DLB).
Design
We compared genotype data on patients and controls from 11 centers. Data concerning demographics, age at onset, disease duration, and clinical and pathological features were collected when available. We conducted pooled analyses using logistic regression to investigate GBA1 mutation carrier status as predicting DLB or PD with dementia status, using common control subjects as a reference group. Random-effects meta-analyses were conducted to account for additional heterogeneity.
Setting
Eleven centers from sites around the world performing genotyping.
Participants
Seven hundred twenty-one cases met diagnostic criteria for DLB and 151 had PD with dementia. We compared these cases with 1962 controls from the same centers matched for age, sex, and ethnicity.
Main Outcome Measures
Frequency of GBA1 mutations in cases and controls.
Results
We found a significant association between GBA1 mutation carrier status and DLB, with an odds ratio of 8.28 (95% CI, 4.78–14.88). The odds ratio for PD with dementia was 6.48 (95% CI, 2.53–15.37). The mean age at diagnosis of DLB was earlier in GBA1 mutation carriers than in noncarriers (63.5 vs 68.9 years; P<.001), with higher disease severity scores.
Conclusions and Relevance
Mutations in GBA1 are a significant risk factor for DLB. GBA1 mutations likely play an even larger role in the genetic etiology of DLB than in PD, providing insight into the role of glucocerebrosidase in Lewy body disease.
doi:10.1001/jamaneurol.2013.1925
PMCID: PMC3841974  PMID: 23588557
15.  Using genome-wide complex trait analysis to quantify ‘missing heritability’ in Parkinson's disease 
Human Molecular Genetics  2012;21(22):4996-5009.
Genome-wide association studies (GWASs) have been successful at identifying single-nucleotide polymorphisms (SNPs) highly associated with common traits; however, a great deal of the heritable variation associated with common traits remains unaccounted for within the genome. Genome-wide complex trait analysis (GCTA) is a statistical method that applies a linear mixed model to estimate phenotypic variance of complex traits explained by genome-wide SNPs, including those not associated with the trait in a GWAS. We applied GCTA to 8 cohorts containing 7096 case and 19 455 control individuals of European ancestry in order to examine the missing heritability present in Parkinson's disease (PD). We meta-analyzed our initial results to produce robust heritability estimates for PD types across cohorts. Our results identify 27% (95% CI 17–38, P = 8.08E − 08) phenotypic variance associated with all types of PD, 15% (95% CI −0.2 to 33, P = 0.09) phenotypic variance associated with early-onset PD and 31% (95% CI 17–44, P = 1.34E − 05) phenotypic variance associated with late-onset PD. This is a substantial increase from the genetic variance identified by top GWAS hits alone (between 3 and 5%) and indicates there are substantially more risk loci to be identified. Our results suggest that although GWASs are a useful tool in identifying the most common variants associated with complex disease, a great deal of common variants of small effect remain to be discovered.
doi:10.1093/hmg/dds335
PMCID: PMC3576713  PMID: 22892372
17.  Integrative Pathway-Based Approach for Genome-Wide Association Studies: Identification of New Pathways for Rheumatoid Arthritis and Type 1 Diabetes 
PLoS ONE  2013;8(10):e78577.
Genome-wide association studies (GWAS) led to the identification of numerous novel loci for a number of complex diseases. Pathway-based approaches using genotypic data provide tangible leads which cannot be identified by single marker approaches as implemented in GWAS. The available pathway analysis approaches mainly differ in the employed databases and in the applied statistics for determining the significance of the associated disease markers.
So far, pathway-based approaches using GWAS data failed to consider the overlapping of genes among different pathways or the influence of protein–interactions. We performed a multistage integrative pathway (MIP) analysis on three common diseases - Crohn's disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D) - incorporating genotypic, pathway, protein- and domain-interaction data to identify novel associations between these diseases and pathways. Additionally, we assessed the sensitivity of our method by studying the influence of the most significant SNPs on the pathway analysis by removing those and comparing the corresponding pathway analysis results. Apart from confirming many previously published associations between pathways and RA, CD and T1D, our MIP approach was able to identify three new associations between disease phenotypes and pathways. This includes a relation between the influenza-A pathway and RA, as well as a relation between T1D and the phagosome and toxoplasmosis pathways. These results provide new leads to understand the molecular underpinnings of these diseases.
The developed software herein used is available at http://www.cogsys.cs.uni-tuebingen.de/software/GWASPathwayIdentifier/index.htm.
doi:10.1371/journal.pone.0078577
PMCID: PMC3808349  PMID: 24205270
18.  Plasma Ceramide and Glucosylceramide Metabolism Is Altered in Sporadic Parkinson's Disease and Associated with Cognitive Impairment: A Pilot Study 
PLoS ONE  2013;8(9):e73094.
Background
Mutations in the gene coding for glucocerebrosidase (GBA), which metabolizes glucosylceramide (a monohexosylceramide) into glucose and ceramide, is the most common genetic risk factor for sporadic Parkinson's disease (PD). GBA mutation carriers are more likely to have an earlier age of onset and to develop cognitive impairment and dementia. We hypothesized that plasma levels of lipids involved in ceramide metabolism would also be altered in PD non-GBA mutation carriers and associated with worse cognition.
Methods
Plasma ceramide, monohexosylceramide, and lactosylceramide levels in 26 cognitively normal PD patients, 26 PD patients with cognitive impairment or dementia, and 5 cognitively normal non-PD controls were determined by LC/ESI/MS/MS.
Results
Levels of all lipid species were higher in PD patients versus controls. Among PD patients, levels of ceramide C16:0, C18:0, C20:0, C22:0, and C24:1 and monohexosylceramide C16:0, C20:0 and C24:0 species were higher (all P<0.05) in those with versus without cognitive impairment.
Conclusion
These results suggest that plasma ceramide and monohexosylceramide metabolism is altered in PD non-GBA mutation carriers and that higher levels are associated with worse cognition. Additional studies with larger sample sizes, including cognitively normal controls, are needed to confirm these findings.
doi:10.1371/journal.pone.0073094
PMCID: PMC3776817  PMID: 24058461
19.  Fine-Mapping, Gene Expression and Splicing Analysis of the Disease Associated LRRK2 Locus 
PLoS ONE  2013;8(8):e70724.
Association studies have identified several signals at the LRRK2 locus for Parkinson's disease (PD), Crohn's disease (CD) and leprosy. However, little is known about the molecular mechanisms mediating these effects. To further characterize this locus, we fine-mapped the risk association in 5,802 PD and 5,556 controls using a dense genotyping array (ImmunoChip). Using samples from 134 post-mortem control adult human brains (UK Human Brain Expression Consortium), where up to ten brain regions were available per individual, we studied the regional variation, splicing and regulation of LRRK2. We found convincing evidence for a common variant PD association located outside of the LRRK2 protein coding region (rs117762348, A>G, P = 2.56×10−8, case/control MAF 0.083/0.074, odds ratio 0.86 for the minor allele with 95% confidence interval [0.80–0.91]). We show that mRNA expression levels are highest in cortical regions and lowest in cerebellum. We find an exon quantitative trait locus (QTL) in brain samples that localizes to exons 32–33 and investigate the molecular basis of this eQTL using RNA-Seq data in n = 8 brain samples. The genotype underlying this eQTL is in strong linkage disequilibrium with the CD associated non-synonymous SNP rs3761863 (M2397T). We found two additional QTLs in liver and monocyte samples but none of these explained the common variant PD association at rs117762348. Our results characterize the LRRK2 locus, and highlight the importance and difficulties of fine-mapping and integration of multiple datasets to delineate pathogenic variants and thus develop an understanding of disease mechanisms.
doi:10.1371/journal.pone.0070724
PMCID: PMC3742662  PMID: 23967090
20.  Polymorphisms in the glial glutamate transporter SLC1A2 are associated with essential tremor 
Neurology  2012;79(3):243-248.
Objective:
Sporadic, genetically complex essential tremor (ET) is one of the most common movement disorders and may lead to severe impairment of the quality of life. Despite high heritability, the genetic determinants of ET are largely unknown. We performed the second genome-wide association study (GWAS) for ET to elucidate genetic risk factors of ET.
Methods:
Using the Affymetrix Genome-Wide SNP Array 6.0 (1000K) we conducted a two-stage GWAS in a total of 990 subjects and 1,537 control subjects from Europe to identify genetic variants associated with ET.
Results:
We discovered association of an intronic variant of the main glial glutamate transporter (SLC1A2) gene with ET in the first-stage sample (rs3794087, p = 6.95 × 10−5, odds ratio [OR] = 1.46). We verified the association of rs3794087 with ET in a second-stage sample (p = 1.25 × 10−3, OR = 1.38). In the subgroup analysis of patients classified as definite ET, rs3794087 obtained genome-wide significance (p = 3.44 × 10−10, OR = 1.59) in the combined first- and second-stage sample. Genetic fine mapping using nonsynonymous single nucleotide polymorphisms (SNPs) and SNPs in high linkage disequilibrium with rs3794087 did not reveal any SNP with a stronger association with ET than rs3794087.
Conclusions:
We identified SLC1A2 encoding the major glial high-affinity glutamate reuptake transporter in the brain as a potential ET susceptibility gene. Acute and chronic glutamatergic overexcitation is implied in the pathogenesis of ET. SLC1A2 is therefore a good functional candidate gene for ET.
doi:10.1212/WNL.0b013e31825fdeed
PMCID: PMC3398434  PMID: 22764253
21.  Combined Flow Cytometric Analysis of Surface and Intracellular Antigens Reveals Surface Molecule Markers of Human Neuropoiesis 
PLoS ONE  2013;8(6):e68519.
Surface molecule profiles undergo dynamic changes in physiology and pathology, serve as markers of cellular state and phenotype and can be exploited for cell selection strategies and diagnostics. The isolation of well-defined cell subsets is needed for in vivo and in vitro applications in stem cell biology. In this technical report, we present an approach for defining a subset of interest in a mixed cell population by flow cytometric detection of intracellular antigens. We have developed a fully validated protocol that enables the co-detection of cluster of differentiation (CD) surface antigens on fixed, permeabilized neural cell populations defined by intracellular staining. Determining the degree of co-expression of surface marker candidates with intracellular target population markers (nestin, MAP2, doublecortin, TUJ1) on neuroblastoma cell lines (SH-SY5Y, BE(2)-M17) yielded a combinatorial CD49f-/CD200high surface marker panel. Its application in fluorescence-activated cell sorting (FACS) generated enriched neuronal cultures from differentiated cell suspensions derived from human induced pluripotent stem cells. Our data underlines the feasibility of using the described co-labeling protocol and co-expression analysis for quantitative assays in mammalian neurobiology and for screening approaches to identify much needed surface markers in stem cell biology.
doi:10.1371/journal.pone.0068519
PMCID: PMC3691147  PMID: 23826393
22.  Derivation and Expansion Using Only Small Molecules of Human Neural Progenitors for Neurodegenerative Disease Modeling 
PLoS ONE  2013;8(3):e59252.
Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.
doi:10.1371/journal.pone.0059252
PMCID: PMC3606479  PMID: 23533608
23.  The natural history of multiple system atrophy: a prospective European cohort study 
Lancet Neurology  2013;12(3):264-274.
Summary
Background
Multiple system atrophy (MSA) is a fatal and still poorly understood degenerative movement disorder that is characterised by autonomic failure, cerebellar ataxia, and parkinsonism in various combinations. Here we present the final analysis of a prospective multicentre study by the European MSA Study Group to investigate the natural history of MSA.
Methods
Patients with a clinical diagnosis of MSA were recruited and followed up clinically for 2 years. Vital status was ascertained 2 years after study completion. Disease progression was assessed using the unified MSA rating scale (UMSARS), a disease-specific questionnaire that enables the semiquantitative rating of autonomic and motor impairment in patients with MSA. Additional rating methods were applied to grade global disease severity, autonomic symptoms, and quality of life. Survival was calculated using a Kaplan-Meier analysis and predictors were identified in a Cox regression model. Group differences were analysed by parametric tests and non-parametric tests as appropriate. Sample size estimates were calculated using a paired two-group t test.
Findings
141 patients with moderately severe disease fulfilled the consensus criteria for MSA. Mean age at symptom onset was 56·2 (SD 8·4) years. Median survival from symptom onset as determined by Kaplan-Meier analysis was 9·8 years (95% CI 8·1–11·4). The parkinsonian variant of MSA (hazard ratio [HR] 2·08, 95% CI 1·09–3·97; p=0·026) and incomplete bladder emptying (HR 2·10, 1·02–4·30; p=0·044) predicted shorter survival. 24-month progression rates of UMSARS activities of daily living, motor examination, and total scores were 49% (9·4 [SD 5·9]), 74% (12·9 [8·5]), and 57% (21·9 [11·9]), respectively, relative to baseline scores. Autonomic symptom scores progressed throughout the follow-up. Shorter symptom duration at baseline (OR 0·68, 0·5–0·9; p=0·006) and absent levodopa response (OR 3·4, 1·1–10·2; p=0·03) predicted rapid UMSARS progression. Sample size estimation showed that an interventional trial with 258 patients (129 per group) would be able to detect a 30% effect size in 1-year UMSARS motor examination decline rates at 80% power.
Interpretation
Our prospective dataset provides new insights into the evolution of MSA based on a follow-up period that exceeds that of previous studies. It also represents a useful resource for patient counselling and planning of multicentre trials.
Funding
Fifth Framework Programme of the European Union, the Oesterreichische Nationalbank, and the Austrian Science Fund.
doi:10.1016/S1474-4422(12)70327-7
PMCID: PMC3581815  PMID: 23391524
24.  SNCA Variants Are Associated with Increased Risk for Multiple System Atrophy 
Annals of neurology  2009;65(5):610-614.
To test whether the synucleinopathies Parkinson’s disease and multiple system atrophy (MSA) share a common genetic etiology, we performed a candidate single nucleotide polymorphism (SNP) association study of the 384 most associated SNPs in a genome-wide association study of Parkinson’s disease in 413 MSA cases and 3,974 control subjects. The 10 most significant SNPs were then replicated in additional 108 MSA cases and 537 controls. SNPs at the SNCA locus were significantly associated with risk for increased risk for the development of MSA (combined p = 5.5 × 1012; odds ratio 6.2).
doi:10.1002/ana.21685
PMCID: PMC3520128  PMID: 19475667
25.  A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants 
Journal of Medical Genetics  2012;49(11):721-726.
Background
Two recent studies identified a mutation (p.Asp620Asn) in the vacuolar protein sorting 35 gene as a cause for an autosomal dominant form of Parkinson disease . Although additional missense variants were described, their pathogenic role yet remains inconclusive.
Methods and results
We performed the largest multi-center study to ascertain the frequency and pathogenicity of the reported vacuolar protein sorting 35 gene variants in more than 15,000 individuals worldwide. p.Asp620Asn was detected in 5 familial and 2 sporadic PD cases and not in healthy controls, p.Leu774Met in 6 cases and 1 control, p.Gly51Ser in 3 cases and 2 controls. Overall analyses did not reveal any significant increased risk for p.Leu774Met and p.Gly51Ser in our cohort.
Conclusions
Our study apart from identifying the p.Asp620Asn variant in familial cases also identified it in idiopathic Parkinson disease cases, and thus provides genetic evidence for a role of p.Asp620Asn in Parkinson disease in different populations worldwide.
doi:10.1136/jmedgenet-2012-101155
PMCID: PMC3488700  PMID: 23125461
Parkinson-s disease; Genome-wide; Genetics; Genetic epidemiology; Complex traits

Results 1-25 (39)