Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  The Role of Poly(ADP-ribose) Polymerase-1 in Rheumatoid Arthritis 
Mediators of Inflammation  2015;2015:837250.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme with a crucial role in the maintenance of genomic stability. In addition to the role of PARP-1 in DNA repair, multiple studies have also demonstrated its involvement in several inflammatory diseases, such as septic shock, asthma, atherosclerosis, and stroke, as well as in cancer. In these diseases, the pharmacological inhibition of PARP-1 has shown a beneficial effect, suggesting that PARP-1 regulates their inflammatory processes. In recent years, we have studied the role of PARP-1 in rheumatoid arthritis, as have other researchers, and the results have shown that PARP-1 has an important function in the development of this disease. This review summarizes current knowledge on the effects of PARP-1 in rheumatoid arthritis.
PMCID: PMC4539103  PMID: 26339143
2.  Tie2 Signaling Cooperates with TNF to Promote the Pro-Inflammatory Activation of Human Macrophages Independently of Macrophage Functional Phenotype 
PLoS ONE  2014;9(1):e82088.
Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 –differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 –differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.
PMCID: PMC3880273  PMID: 24404127
3.  Matrix metalloproteinase-8 deficiency increases joint inflammation and bone erosion in the K/BxN serum-transfer arthritis model 
Arthritis Research & Therapy  2010;12(6):R224.
Rheumatoid arthritis is an autoimmune disease in which joint inflammation leads to progressive cartilage and bone erosion. Matrix metalloproteinases (MMPs) implicated in homeostasis of the extracellular matrix play a central role in cartilage degradation. However, the role of specific MMPs in arthritis pathogenesis is largely unknown. The aim of the present study was to investigate the role of Mmp-8 (collagenase-2) in an arthritis model.
Arthritis was induced in Mmp8-deficient and wildtype mice by K/BxN serum transfer. Arthritis severity was measured by a clinical index and ankle sections were scored for synovial inflammation, cartilage damage and bone erosion. cDNA microarray analysis, real-time PCR and western blot were performed to identify differential changes in gene expression between mice lacking Mmp8 and controls.
Mmp8 deficiency increased the severity of arthritis, although the incidence of disease was similar in control and deficient mice. Increased clinical score was associated with exacerbated synovial inflammation and bone erosion. We also found that the absence of Mmp8 led to increased expression of IL-1β, pentraxin-3 (PTX3) and prokineticin receptor 2 (PROKR2) in arthritic mice joints.
Lack of Mmp-8 is accompanied by exacerbated synovial inflammation and bone erosion in the K/BxN serum-transfer arthritis model, indicating that this Mmp has a protective role in arthritis.
PMCID: PMC3046537  PMID: 21190566
4.  Akt activity protects rheumatoid synovial fibroblasts from Fas-induced apoptosis by inhibition of Bid cleavage 
Synovial hyperplasia is a main feature of rheumatoid arthritis pathology that leads to cartilage and bone damage in the inflamed joints. Impaired apoptosis of resident synoviocytes is pivotal in this process. Apoptosis resistance seems to involve defects in the extrinsic and intrinsic apoptotic pathways. The aim of this study was to investigate the association of PI3Kinase/Akt and the mitochondrial apoptotic pathway in the resistance of rheumatoid arthritis (RA) fibroblast like synovial cells (FLS) to Fas-mediated apoptosis.
Apoptosis was assessed by ELISA quantification of nucleosomal release, Hoechst staining and activated caspase-3/7 measure in cultured RA FLS stimulated with anti-Fas antibody. Two Phosphoinositol-3-kinase/protein Kinase B (PI3 Kinase) inhibitors, Wortmannine and LY294002, were used before anti-Fas stimulation. Proapoptotic BH3 interacting domain death agonist (Bid) was suppressed in RA FLS by small interfering RNA (siRNA) transfection. Bid was overexpressed by transfection with the pDsRed2-Bid vector. Phosphorylated Akt, caspase-9, and Bid expression were analysed by western blot.
PI3 kinase inhibition sensitizes RA FLS to Fas-induced apoptosis by increasing cleavage of Bid protein. Bid suppression completely abrogated Fas-induced apoptosis and Bid overexpression highly increased apoptotic rate of RA FLS in association with cleavage of caspase-9.
In RA FLS, phosphorylation of Akt protects against Fas-induced apoptosis through inhibition of Bid cleavage. The connection between the extrinsic and the intrinsic apoptotic pathways are critical in this Fas- mediated apoptosis and points to PI3Kinase as potential therapeutic target for RA.
PMCID: PMC2875667  PMID: 20187936
5.  Partial protection against collagen antibody-induced arthritis in PARP-1 deficient mice 
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear DNA-binding protein that participates in the regulation of DNA repair and maintenance of genomic integrity. In addition, PARP-1 has a role in several models of inflammation disease, where its absence or inactivation confers protection. The aim of this study was to analyze the impact of selective PARP-1 suppression in collagen antibody-induced arthritis. We show that PARP-1 deficiency partially reduces the severity of arthritis, although the incidence of disease was similar in control and deficient mice. Decreased clinical scores were accompanied by partial reduction of histopathological findings. Interestingly, quantitative real-time PCR and ELISA analysis revealed that the absence of PARP-1 down-regulated IL-1β and monocyte chemotactic protein 1 expression in arthritic joints whereas tumor necrosis factor-α transcription was not impaired. Our results provide evidence of the contribution of PARP-1 to the progression of arthritis and identify this protein as a potential therapeutic target for the treatment of rheumatoid arthritis.
PMCID: PMC1526570  PMID: 16356201

Results 1-5 (5)