PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (36)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  The Impact of the Gut Microbiota on Drug Metabolism and Clinical Outcome 
The significance of the gut microbiota as a determinant of drug pharmacokinetics and accordingly therapeutic response is of increasing importance with the advent of modern medicines characterised by low solubility and/or permeability, or modified-release. These physicochemical properties and release kinetics prolong drug residence times within the gastrointestinal tract, wherein biotransformation by commensal microbes can occur. As the evidence base in support of this supplementary metabolic “organ” expands, novel opportunities to engineer the microbiota for clinical benefit have emerged. This review provides an overview of microbe-mediated alteration of drug pharmacokinetics, with particular emphasis on studies demonstrating proof of concept in vivo. Additionally, recent advances in modulating the microbiota to improve clinical response to therapeutics are explored.
PMCID: PMC5045146  PMID: 27698621
microbiota; microbiome; drug metabolism; pharmacokinetics; gastrointestinal
2.  Unconjugated Bile Acids Influence Expression of Circadian Genes: A Potential Mechanism for Microbe-Host Crosstalk 
PLoS ONE  2016;11(12):e0167319.
Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression.
doi:10.1371/journal.pone.0167319
PMCID: PMC5132238  PMID: 27907092
3.  Listeria monocytogenes: survival and adaptation in the gastrointestinal tract 
The foodborne pathogen Listeria monocytogenes has the capacity to survive and grow in a diverse range of natural environments. The transition from a food environment to the gastrointestinal tract begins a process of adaptation that may culminate in invasive systemic disease. Here we describe recent advances in our understanding of how L. monocytogenes adapts to the gastrointestinal environment prior to initiating systemic infection. We will discuss mechanisms used by the pathogen to survive encounters with acidic environments (which include the glutamate decarboxylase and arginine deiminase systems), and those which enable the organism to cope with bile acids (including bile salt hydrolase) and competition with the resident microbiota. An increased understanding of how the pathogen survives in this environment is likely to inform the future design of novel prophylactic approaches that exploit specific pharmabiotics; including probiotics, prebiotics, or phages.
doi:10.3389/fcimb.2014.00009
PMCID: PMC3913888  PMID: 24551601
Listeria; stress; acid; bile; gastrointestinal; virulence; pathogenesis; infection
4.  Bacteriophage Can Prevent Encrustation and Blockage of Urinary Catheters by Proteus mirabilis 
Proteus mirabilis forms dense crystalline biofilms on catheter surfaces that occlude urine flow, leading to serious clinical complications in long-term catheterized patients, but there are presently no truly effective approaches to control catheter blockage by this organism. This study evaluated the potential for bacteriophage therapy to control P. mirabilis infection and prevent catheter blockage. Representative in vitro models of the catheterized urinary tract, simulating a complete closed drainage system as used in clinical practice, were employed to evaluate the performance of phage therapy in preventing blockage. Models mimicking either an established infection or early colonization of the catheterized urinary tract were treated with a single dose of a 3-phage cocktail, and the impact on time taken for catheters to block, as well as levels of crystalline biofilm formation, was measured. In models of established infection, phage treatment significantly increased time taken for catheters to block (∼3-fold) compared to untreated controls. However, in models simulating early-stage infection, phage treatment eradicated P. mirabilis and prevented blockage entirely. Analysis of catheters from models of established infection 10 h after phage application demonstrated that phage significantly reduced crystalline biofilm formation but did not significantly reduce the level of planktonic cells in the residual bladder urine. Taken together, these results show that bacteriophage constitute a promising strategy for the prevention of catheter blockage but that methods to deliver phage in sufficient numbers and within a key therapeutic window (early infection) will also be important to the successful application of phage to this problem.
doi:10.1128/AAC.02685-15
PMCID: PMC4775969  PMID: 26711744
5.  Signature tagged mutagenesis in the functional genetic analysis of gastrointestinal pathogens 
Gut Microbes  2012;3(2):93-103.
Signature tagged mutagenesis is a genetic approach that was developed to identify novel bacterial virulence factors. It is a negative selection method in which unique identification tags allow analysis of pools of mutants in mixed populations. The approach is particularly well suited to functional genetic analysis of the gastrointestinal phase of infection in foodborne pathogens and has the capacity to guide the development of novel vaccines and therapeutics. In this review we outline the technical principles underpinning signature-tagged mutagenesis as well as novel sequencing-based approaches for transposon mutant identification such as TraDIS (transposon directed insertion-site sequencing). We also provide an analysis of screens that have been performed in gastrointestinal pathogens which are a global health concern (Escherichia coli, Listeria monocytogenes, Helicobacter pylori, Vibrio cholerae and Salmonella enterica). The identification of key virulence loci through the use of signature tagged mutagenesis in mice and relevant larger animal models is discussed.
doi:10.4161/gmic.19578
PMCID: PMC3370953  PMID: 22555467
gastrointestinal; GI tract; gut; pathogen; pathogenesis; signature tagged mutagenesis; virulence
6.  Draft Genome Sequences of Listeria monocytogenes Serotype 4b Strains 944 and 2993 and Serotype 1/2c Strains 198 and 2932 
Genome Announcements  2016;4(3):e00482-16.
Listeria monocytogenes is a foodborne pathogen and the causative agent of listeriosis among humans and animals. The draft genome sequences of L. monocytogenes serotype 4b strains 944 and 2993 and serotype 1/2c strains 198 and 2932 are reported here.
doi:10.1128/genomeA.00482-16
PMCID: PMC4891646  PMID: 27257200
7.  Occurrence, Persistence, and Virulence Potential of Listeria ivanovii in Foods and Food Processing Environments in the Republic of Ireland 
BioMed Research International  2015;2015:350526.
The aim of this study was to assess the occurrence of L. ivanovii in foods and food processing environments in Ireland, to track persistence, and to characterize the disease causing potential of the isolated strains. A total of 2,006 samples (432 food samples and 1,574 environmental swabs) were collected between March 2013 and March 2014 from 48 food business operators (FBOs) belonging to different production sectors (dairy, fish, meat, and fresh-cut vegetable). Six of the forty-eight FBOs had samples positive for L. ivanovii on at least one sampling occasion. L. ivanovii was present in fifteen samples (fourteen environmental samples and one food sample). All but one of those positive samples derived from the dairy sector, where L. ivanovii prevalence was 1.7%. Six distinguishable pulsotypes were obtained by PFGE analysis, with one pulsotype being persistent in the environment of a dairy food business. Sequence analysis of the sigB gene showed that fourteen isolates belonged to L. ivanovii subsp. londoniensis, while only one isolate was L. ivanovii subsp. ivanovii. Cell invasion assays demonstrated that the majority of L. ivanovii strains were comparable to L. monocytogenes EGDe in their ability to invade CACO-2 epithelial cells whilst four isolates had significantly higher invasion efficiencies.
doi:10.1155/2015/350526
PMCID: PMC4620271  PMID: 26543856
8.  Divergent Evolution of the Activity and Regulation of the Glutamate Decarboxylase Systems in Listeria monocytogenes EGD-e and 10403S: Roles in Virulence and Acid Tolerance 
PLoS ONE  2014;9(11):e112649.
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.
doi:10.1371/journal.pone.0112649
PMCID: PMC4227838  PMID: 25386947
9.  Mobile genetic elements of the human gastrointestinal tract 
Gut Microbes  2013;4(4):271-280.
The human intestine is an important location for horizontal gene transfer (HGT) due to the presence of a densely populated community of microorganisms which are essential to the health of the human superorganism. HGT in this niche has the potential to influence the evolution of members of this microbial community and to mediate the spread of antibiotic resistance genes from commensal organisms to potential pathogens. Recent culture-independent techniques and metagenomic studies have provided an insight into the distribution of mobile genetic elements (MGEs) and the extent of HGT in the human gastrointestinal tract. In this mini-review, we explore the current knowledge of mobile genetic elements in the gastrointestinal tract, the progress of research into the distribution of antibiotic resistance genes in the gut and the potential role of MGEs in the spread of antibiotic resistance. In the face of reduced treatment options for many clinical infections, understanding environmental and commensal antibiotic resistance and spread is critical to the future development of meaningful and long lasting anti-microbial therapies.
doi:10.4161/gmic.24627
PMCID: PMC3744512  PMID: 23651955
antibiotics resistance; mobile genetic elements; gut; gene transfer; microbiome
10.  A Mariner Transposon-Based Signature-Tagged Mutagenesis System for the Analysis of Oral Infection by Listeria monocytogenes 
PLoS ONE  2013;8(9):e75437.
Listeria monocytogenes is a Gram-positive foodborne pathogen and the causative agent of listerosis a disease that manifests predominately as meningitis in the non-pregnant individual or infection of the fetus and spontaneous abortion in pregnant women. Common-source outbreaks of foodborne listeriosis are associated with significant morbidity and mortality. However, relatively little is known concerning the mechanisms that govern infection via the oral route. In order to aid functional genetic analysis of the gastrointestinal phase of infection we designed a novel signature-tagged mutagenesis (STM) system based upon the invasive L. monocytogenes 4b serotype H7858 strain. To overcome the limitations of gastrointestinal infection by L. monocytogenes in the mouse model we created a H7858 strain that is genetically optimised for oral infection in mice. Furthermore our STM system was based upon a mariner transposon to favour numerous and random transposition events throughout the L. monocytogenes genome. Use of the STM bank to investigate oral infection by L. monocytogenes identified 21 insertion mutants that demonstrated significantly reduced potential for infection in our model. The sites of transposon insertion included lmOh7858_0671 (encoding an internalin homologous to Lmo0610), lmOh7858_0898 (encoding a putative surface-expressed LPXTG protein homologous to Lmo0842), lmOh7858_2579 (encoding the HupDGC hemin transport system) and lmOh7858_0399 (encoding a putative fructose specific phosphotransferase system). We propose that this represents an optimised STM system for functional genetic analysis of foodborne/oral infection by L. monocytogenes.
doi:10.1371/journal.pone.0075437
PMCID: PMC3771922  PMID: 24069416
11.  Influence of internalin a murinisation on host resistance to orally acquired listeriosis in mice 
BMC Microbiology  2013;13:90.
Background
The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of ‘murinisation’ to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation.
Results
The murinised Listeria monocytogenes strain showed enhanced invasiveness and induced more severe infections in all four investigated mouse inbred strains compared to the non-murinised Listeria strain. We identified C57BL/6J mice as being most resistant to orally acquired listeriosis whereas C3HeB/FeJ, A/J and BALB/cJ mice were found to be most susceptible to infection. This was reflected in faster kinetics of Listeria dissemination, higher bacterial loads in internal organs, and elevated serum levels of IL-6, IFN-γ, TNF-α and CCL2 in the susceptible strains as compared to the resistant C57BL/6J strain. Importantly, murinisation of InlA did not cause enhanced invasion of Listeria monocytogenes into the brain.
Conclusion
Murinised Listeria are able to efficiently cross the intestinal barrier in mice from diverse genetic backgrounds. However, expression of murinized InlA does not enhance listerial brain invasion suggesting that crossing of the blood brain barrier and crossing of the intestinal epithelium are achieved by Listeria monocytogenes through different molecular mechanisms.
doi:10.1186/1471-2180-13-90
PMCID: PMC3640945  PMID: 23617550
12.  A Putative P-Type ATPase Required for Virulence and Resistance to Haem Toxicity in Listeria monocytogenes 
PLoS ONE  2012;7(2):e30928.
Regulation of iron homeostasis in many pathogens is principally mediated by the ferric uptake regulator, Fur. Since acquisition of iron from the host is essential for the intracellular pathogen Listeria monocytogenes, we predicted the existence of Fur-regulated systems that support infection. We examined the contribution of nine Fur-regulated loci to the pathogenicity of L. monocytogenes in a murine model of infection. While mutating the majority of the genes failed to affect virulence, three mutants exhibited a significantly compromised virulence potential. Most striking was the role of the membrane protein we designate FrvA (Fur regulated virulence factor A; encoded by frvA [lmo0641]), which is absolutely required for the systemic phase of infection in mice and also for virulence in an alternative infection model, the Wax Moth Galleria mellonella. Further analysis of the ΔfrvA mutant revealed poor growth in iron deficient media and inhibition of growth by micromolar concentrations of haem or haemoglobin, a phenotype which may contribute to the attenuated growth of this mutant during infection. Uptake studies indicated that the ΔfrvA mutant is unaffected in the uptake of ferric citrate but demonstrates a significant increase in uptake of haem and haemin. The data suggest a potential role for FrvA as a haem exporter that functions, at least in part, to protect the cell against the potential toxicity of free haem.
doi:10.1371/journal.pone.0030928
PMCID: PMC3283593  PMID: 22363518
13.  Investigation of the Mechanisms by Which Listeria monocytogenes Grows in Porcine Gallbladder Bile▿ †  
Infection and Immunity  2010;79(1):369-379.
The food-borne pathogen Listeria monocytogenes is known to colonize the lumen of the gallbladder in infected mice and to grow rapidly in this environment (J. Hardy et al., Science 303:851-853, 2004). However, relatively little is known about the mechanisms utilized by the pathogen to survive and grow in this location. We utilized gallbladder bile (GB bile) isolated directly from porcine gallbladders as an ex vivo model of gallbladder growth. We demonstrate that GB bile is generally nontoxic for bacteria and can readily support growth of a variety of bacterial species including L. monocytogenes, Lactococcus lactis, Salmonella enterica serovar Typhimurium, and Escherichia coli. Significantly, L. monocytogenes grew at the same rate as the nonpathogenic species Listeria innocua, indicating that the pathogen does not possess specialized mechanisms that enable growth in this environment. However, when we reduced the pH of GB bile to pH 5.5 in order to mimic the release of bile within the small intestine, the toxicity of GB bile increased significantly and specific resistance mechanisms (Sigma B, BSH, and BilE) were essential for survival of the pathogen under these conditions. In order to identify genetic loci that are necessary for growth of L. monocytogenes in the gallbladder, a mariner transposon bank was created and screened for mutants unable to replicate in GB bile. This led to the identification of mutants in six loci, including genes encoding enzymes involved in purine metabolism, amino acid biosynthesis, and biotin uptake. Although GB bile does not represent a significant impediment to bacterial growth, specific metabolic processes are required by L. monocytogenes in order to grow in this environment.
doi:10.1128/IAI.00330-10
PMCID: PMC3019883  PMID: 20937762
14.  Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial γδ T Cell Responses in Early Infection 
PLoS Pathogens  2011;7(5):e1002040.
Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early infection and suggest novel diagnostic and therapeutic approaches.
Author Summary
The immune system of all jawed vertebrates harbors three distinct lymphocyte populations – αβ T cells, γδ T cells and B cells – yet only higher primates including humans possess so-called Vγ9/Vδ2 T cells, an enigmatic γδ T cell subset that uniformly responds to the majority of bacterial pathogens. For reasons that are not understood, this responsiveness is absent in all other animals although they too are constantly exposed to a plethora of potentially harmful micro-organisms. We here investigated how Vγ9/Vδ2 T cells respond to live microbes by mimicking physiological conditions in acute disease. Our experiments demonstrate that Vγ9/Vδ2 T cells recognize a small common molecule released when invading bacteria become ingested and killed by other white blood cells. The stimulation of Vγ9/Vδ2 T cells at the site of infection amplifies the inflammatory response and has important consequences for pathogen clearance and the development of microbe-specific immunity. However, if triggered at the wrong time or the wrong place, this rapid reaction toward bacteria may also lead to inflammation-related damage. These findings improve our insight into the complex cellular interactions in early infection, identify novel biomarkers of diagnostic and predictive value and highlight new avenues for therapeutic intervention.
doi:10.1371/journal.ppat.1002040
PMCID: PMC3093373  PMID: 21589907
15.  Specific Osmolyte Transporters Mediate Bile Tolerance in Listeria monocytogenes▿  
Infection and Immunity  2009;77(11):4895-4904.
The food-borne pathogenic bacterium Listeria monocytogenes has the potential to adapt to an array of suboptimal growth environments encountered within the host. The pathogen is relatively bile tolerant and has the capacity to survive and grow within both the small intestine and the gallbladder in murine models of oral infection. We have previously demonstrated a role for the principal carnitine transport system of L. monocytogenes (OpuC) in gastrointestinal survival of the pathogen (R. Sleator, J. Wouters, C. G. M. Gahan, T. Abee, and C. Hill, Appl. Environ. Microbiol. 67:2692-2698, 2001). However, the mechanisms by which OpuC, or indeed carnitine, protects the pathogen in this environment are unclear. In the current study, systematic analysis of strains with mutations in osmolyte transporters revealed a role for OpuC in resisting the acute toxicity of bile, with a minor role also played by BetL, a secondary betaine uptake system which also exhibits a low affinity for carnitine. In addition, the toxic effects of bile on wild-type L. monocytogenes cells were ameliorated when carnitine (but not betaine) was added to the medium. lux-promoter fusions to the promoters of the genes encoding the principal osmolyte uptake systems Gbu, BetL, and OpuC and the known bile tolerance system BilE were constructed. Promoter activity for all systems was significantly induced in the presence of bile, with the opuC and bilE promoters exhibiting the highest levels of bile-dependent expression in vitro and the betL and bilE promoters showing the highest expression levels in the intestines of orally inoculated mice. A direct comparison of all osmolyte transporter mutants in a murine oral infection model confirmed a major role for OpuC in intestinal persistence and systemic invasion and a minor role for the BetL transporter in fecal carriage. This study therefore demonstrates a previously unrecognized function for osmolyte uptake systems in bile tolerance in L. monocytogenes.
doi:10.1128/IAI.00153-09
PMCID: PMC2772544  PMID: 19737907
16.  Analysis of the Isoprenoid Biosynthesis Pathways in Listeria monocytogenes Reveals a Role for the Alternative 2-C-Methyl-d-Erythritol 4-Phosphate Pathway in Murine Infection▿  
Infection and Immunity  2008;76(11):5392-5401.
Most bacteria synthesize isoprenoids through one of two essential pathways which provide the basic building block, isopentyl diphosphate (IPP): either the classical mevalonate pathway or the alternative non-mevalonate 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. However, postgenomic analyses of the Listeria monocytogenes genome revealed that this pathogen possesses the genetic capacity to produce the complete set of enzymes involved in both pathways. The nonpathogenic species Listeria innocua naturally lacks the last two genes (gcpE and lytB) of the MEP pathway, and bioinformatic analyses strongly suggest that the genes have been lost through evolution. In the present study we show that heterologous expression of gcpE and lytB in L. innocua can functionally restore the MEP pathway in this organism and confer on it the ability to induce Vγ9Vδ2 T cells. We have previously confirmed that both pathways are functional in L. monocytogenes and can provide sufficient IPP for normal growth in laboratory media (M. Begley, C. G. Gahan, A. K. Kollas, M. Hintz, C. Hill, H. Jomaa, and M. Eberl, FEBS Lett. 561:99-104, 2004). Here we describe a targeted mutagenesis strategy to create a double pathway mutant in L. monocytogenes which cannot grow in the absence of exogenously provided mevalonate, confirming the requirement for at least one intact pathway for growth. In addition, murine studies revealed that mutants lacking the MEP pathway were impaired in virulence relative to the parent strain during intraperitoneal infection, while mutants lacking the classical mevalonate pathway were not impaired in virulence potential. In vivo bioluminescence imaging also confirmed in vivo expression of the gcpE gene (MEP pathway) during murine infection.
doi:10.1128/IAI.01376-07
PMCID: PMC2573353  PMID: 18765739
17.  Tools for Functional Postgenomic Analysis of Listeria monocytogenes▿  
Applied and Environmental Microbiology  2008;74(13):3921-3934.
We describe the development of genetic tools for regulated gene expression, the introduction of chromosomal mutations, and improved plasmid transfer by electroporation in the food-borne pathogen Listeria monocytogenes. pIMK, a kanamycin-resistant, site-specific, integrative listeriophage vector was constructed and then modified for overexpression (pIMK2) or for isopropyl-β-d-thiogalactopyranoside (IPTG)-regulated expression (pIMK3 and pIMK4). The dynamic range of promoters was assessed by determining luciferase activity, P60 secretion, and internalin A-mediated invasion. These analyses demonstrated that pIMK4 and pIMK3 have a stringently controlled dynamic range of 540-fold. Stable gene overexpression was achieved with pIMK2, giving a range of expression for the three vectors of 1,350-fold. The lactococcal pORI280 system was optimized for the generation of chromosomal mutations and used to create five new prfA star mutants. The combination of pIMK4 and pORI280 allowed streamlined creation of “IPTG-dependent” mutants. This was exemplified by creation of a clean deletion mutant with deletion of the universally essential secA gene, and this mutant exhibited a rapid loss of viability upon withdrawal of IPTG. We also improved plasmid transfer by electroporation into three commonly used laboratory strains of L. monocytogenes. A 125-fold increase in transformation efficiency for EGDe compared with the widely used protocol of Park and Stewart (S. F. Park and G. S. Stewart, Gene 94:129-132, 1990) was observed. Maximal transformation efficiencies of 5.7 × 106 and 6.7 × 106 CFU per μg were achieved for EGDe and 10403S, respectively, with a replicating plasmid. An efficiency of 2 × 107 CFU per μg is the highest efficiency reported thus far for L. monocytogenes F2365.
doi:10.1128/AEM.00314-08
PMCID: PMC2446514  PMID: 18441118
18.  Pseudomonas aeruginosa RsmA Plays an Important Role during Murine Infection by Influencing Colonization, Virulence, Persistence, and Pulmonary Inflammation▿  
Infection and Immunity  2007;76(2):632-638.
The ability of Pseudomonas aeruginosa to cause a broad range of infections in humans is due, at least in part, to its adaptability and its capacity to regulate the expression of key virulence genes in response to specific environmental conditions. Multiple two-component response regulators have been shown to facilitate rapid responses to these environmental conditions, including the coordinated expression of specific virulence determinants. RsmA is a posttranscriptional regulatory protein which controls the expression of a number of virulence-related genes with relevance for acute and chronic infections. Many membrane-bound sensors, including RetS, LadS, and GacS, are responsible for the reciprocal regulation of genes associated with acute infection and chronic persistence. In P. aeruginosa this is due to sensors influencing the expression of the regulatory RNA RsmZ, with subsequent effects on the level of free RsmA. While interactions between an rsmA mutant and human airway epithelial cells have been examined in vitro, the role of RsmA during infection in vivo has not been determined yet. Here the function of RsmA in both acute and chronic models of infection was examined. The results demonstrate that RsmA is involved in initial colonization and dissemination in a mouse model of acute pneumonia. Furthermore, while loss of RsmA results in reduced colonization during the initial stages of acute infection, the data show that mutation of rsmA ultimately favors chronic persistence and results in increased inflammation in the lungs of infected mice.
doi:10.1128/IAI.01132-07
PMCID: PMC2223469  PMID: 18025099
19.  Construction of p16Slux, a Novel Vector for Improved Bioluminescent Labeling of Gram-Negative Bacteria▿  
Applied and Environmental Microbiology  2007;73(21):7092-7095.
A novel vector has been constructed for the constitutive luminescent tagging of gram-negative bacteria by site-specific integration into the 16S locus of the bacterial chromosome. A number of gram-negative pathogens were successfully tagged using this vector, and the system was validated during murine infections of living animals.
doi:10.1128/AEM.01394-07
PMCID: PMC2074938  PMID: 17766445
20.  Improved Luciferase Tagging System for Listeria monocytogenes Allows Real-Time Monitoring In Vivo and In Vitro▿  
An improved system for luciferase tagging Listeria monocytogenes was developed by constructing a highly active, constitutive promoter. This construct gave 100-fold-higher activity in broth than any native promoter tested and allowed for imaging of lux-tagged L. monocytogenes in food products, during murine infections, and in tumor targeting studies.
doi:10.1128/AEM.02940-06
PMCID: PMC1892880  PMID: 17351089
21.  Novel Luciferase Reporter System for In Vitro and Organ-Specific Monitoring of Differential Gene Expression in Listeria monocytogenes 
In this paper we describe construction of a luciferase-based vector, pPL2lux, and use of this vector to study gene expression in Listeria monocytogenes. pPL2lux is a derivative of the listerial integration vector pPL2 and harbors a synthetic luxABCDE operon encoding a fatty acid reductase complex (LuxCDE) involved in synthesis of the fatty aldehyde substrate for the bioluminescence reaction catalyzed by the LuxAB luciferase. We constructed pPL2lux derivatives in which the secA and hlyA promoters were translationally fused to luxABCDE and integrated as a single copy into the chromosome of L. monocytogenes EGD-e. Growth experiments revealed that hlyA was expressed predominantly in the stationary phase in LB medium buffered at pH 7.4, whereas secA expression could be detected in the exponential growth phase. Moreover, the correlation between luciferase activity and transcription levels, as determined by reverse transcriptase PCR, was confirmed using conditions known to lead to repression and activation of hemolysin expression (addition of cellobiose and activated charcoal, respectively). Furthermore, hemolysin expression could be monitored in real time during invasion of an intact monolayer of C2Bbe1 (Caco-2-derived) cells. Finally, hemolysin expression could be detected in the livers, spleens, and kidneys of mice 3 days postinfection. These experiments clearly established the effectiveness of pPL2lux as a quantitative reporter system for real-time, noninvasive evaluation of gene expression in L. monocytogenes.
doi:10.1128/AEM.72.4.2876-2884.2006
PMCID: PMC1449049  PMID: 16597994
22.  Bile Salt Hydrolase Activity in Probiotics 
doi:10.1128/AEM.72.3.1729-1738.2006
PMCID: PMC1393245  PMID: 16517616
23.  Listeria monocytogenes PerR Mutants Display a Small-Colony Phenotype, Increased Sensitivity to Hydrogen Peroxide, and Significantly Reduced Murine Virulence 
Applied and Environmental Microbiology  2005;71(12):8314-8322.
Deletion of perR in Listeria monocytogenes results in a small-colony phenotype (ΔperRsm) that is slow growing and exhibits increased sensitivity to H2O2. At a relatively high frequency, large-colony variants (ΔperRlg) arise, which are more resistant to H2O2 than the wild-type and ultimately dominate the culture. Transcriptional analysis revealed that the kat gene (catalase) is up-regulated in both types of mutants and that the highest level is apparent in ΔperRsm mutants, demonstrating PerR regulation of this gene. Overexpression of the catalase gene in the wild-type background resulted in a slower-growing strain with a smaller colony size similar to that of ΔperRsm. By combining a bioinformatic approach with experimental evidence, other PerR-regulated genes were identified, including fur, lmo0641, fri, lmo1604, hemA, and trxB. The transcriptional profile of these genes in both mutant backgrounds was similar to that of catalase in that a higher level of expression was observed in ΔperRsm than in the wild type or ΔperRlg. Murine studies revealed that the virulence potential of the ΔperRsm mutant is substantially reduced compared to that of the wild-type and ΔperRlg strains. Collectively, the data demonstrate that the ΔperRsm mutant represents the true phenotype associated with the absence of PerR, which is linked to overexpression of regulated genes that negatively affect bacterial homeostasis both in vitro and in vivo. A subsequent secondary mutation occurred at a high frequency, which resulted in phenotypic reversion to a large-colony phenotype with increased fitness that may have obstructed the analysis of the role of PerR in the physiology of the bacterial cell.
doi:10.1128/AEM.71.12.8314-8322.2005
PMCID: PMC1317367  PMID: 16332818
24.  Role for HtrA in Stress Induction and Virulence Potential in Listeria monocytogenes 
In silico analysis of the Listeria monocytogenes genome revealed lmo0292, a gene predicted to encode a HtrA-like serine protease. A stable insertion mutant was constructed, revealing a requirement for htrA in the listerial response to heat, acid, and penicillin stress. Transcriptional analysis revealed that htrA is not induced in response to heat shock but is induced in response to low pH and penicillin G stress. Furthermore, htrA expression was shown to be dependent upon the LisRK two-component sensor-kinase, a system known to respond to changes in integrity of the cell envelope. In addition, we demonstrated that a second in-frame start codon, upstream of that previously annotated for L. monocytogenes htrA, incorporating a putative signal sequence appears to influence virulence potential. Finally, a significant virulence defect was observed for the htrA mutant, indicating that this gene is required for full virulence in mice. Our findings suggest that L. monocytogenes lmo0292 encodes an HtrA-like serine protease that is not part of the classical heat shock response but is involved in stress responses and virulence.
doi:10.1128/AEM.71.8.4241-4247.2005
PMCID: PMC1183364  PMID: 16085809
25.  Presence of GadD1 Glutamate Decarboxylase in Selected Listeria monocytogenes Strains Is Associated with an Ability To Grow at Low pH 
The glutamate decarboxylase (GAD) system is critical to the survival of Listeria monocytogenes LO28 at low-pH stress (
doi:10.1128/AEM.71.6.2832-2839.2005
PMCID: PMC1151821  PMID: 15932974

Results 1-25 (36)