PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Histone deacetylase inhibition synergistically enhances pemetrexed cytotoxicity through induction of apoptosis and autophagy in non-small cell lung cancer 
Molecular Cancer  2014;13(1):230.
Background
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Pemetrexed, a multi-target folate antagonist, has demonstrated efficacy in NSCLC histological subtypes characterized by low thymidylate synthase (TS) expression. Among many other potential targets, histone deacetylase inhibitors (HDACi) modulate TS expression, potentially sensitizing to the cytotoxic action of anti-cancer drugs that target the folate pathway, such as pemetrexed. Since high levels of TS have been linked to clinical resistance to pemetrexed in NSCLC, herein we investigated the molecular and functional effects of combined pemetrexed and ITF2357, a pan-HDACi currently in clinical trials as an anti-cancer agent.
Results
In NSCLC cell lines, HDAC inhibition by ITF2357 induced histone and tubulin acetylation and downregulated TS expression at the mRNA and protein level. In combination experiments in vitro ITF2357 and pemetrexed demonstrated sequence-dependent synergistic growth-inhibitory effects, with the sequence pemetrexed followed by ITF2357 inducing a strikingly synergistic reduction in cell viability and induction of both apoptosis and autophagy in all cell line models tested, encompassing both adenocarcinoma and squamous cell carcinoma. Conversely, simultaneous administration of both drugs achieved frankly antagonistic effects, while the sequence of ITF2357 followed by pemetrexed had additive to slightly synergistic growth-inhibitory effects only in certain cell lines. Similarly, highly synergistic growth inhibition was also observed in patient-derived lung cancer stem cells (LCSC) exposed to pemetrexed followed by ITF2357. In terms of molecular mechanisms of interaction, the synergistic growth-inhibitory effects observed were only partially related to TS modulation by ITF2357, as genetic silencing of TS expression potentiated growth inhibition by either pemetrexed or ITF2357 and, to a lesser extent, by their sequential combination. Genetic and pharmacological approaches provided an interesting link between the autophagic and apoptotic pathways, and showed that sequential pemetrexed/ITF2357 causes a toxic form of autophagy with consequent activation of a caspase-dependent apoptotic program. In vivo experiments in NSCLC xenografts confirmed that sequential pemetrexed/ITF2357 is feasible and results in increased inhibition of tumor growth and increased mice survival.
Conclusions
Overall, these data provide a strong rationale for the clinical development of sequential schedules employing pemetrexed followed by HDACi in NSCLC.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-4598-13-230) contains supplementary material, which is available to authorized users.
doi:10.1186/1476-4598-13-230
PMCID: PMC4198757  PMID: 25301686
HDAC inhibitors; ITF2357; Givinostat; Pemetrexed; Apoptosis; Autophagy; Synergism; NSCLC
2.  Removal of the BH4 Domain from Bcl-2 Protein Triggers an Autophagic Process that Impairs Tumor Growth12 
Neoplasia (New York, N.Y.)  2013;15(3):315-327.
Here, we show that forced expression of a B-cell lymphoma 2 (bcl-2) protein lacking residues 1 to 36 at the N-terminal, including the entire Bcl-2 homology 4 (BH4) domain, determines reduction of in vitro and in vivo human melanoma growth. Noteworthy, melanoma cells in vivo exhibit markedly increased autophagy, as response to expression of bcl-2 protein deleted of its BH4 domain. This observation led to the identification of a novel gain of function for bcl-2 protein lacking the BH4 domain. In particular, upon different autophagic stimuli in vitro, overexpression of bcl-2 protein deleted of BH4 domain induces autophagosome accumulation, conversion of microtubule-associated protein 1 light chain 3B-II, reduced expression of p62/SQSTM1 protein, and thereby enhanced autophagic flux. The relevance of Beclin-1 is evidenced by the fact that 1) the autophagy-promoting and growth-inhibiting properties are partially rescued by Beclin-1 knockdown in cells expressing bcl-2 protein lacking the BH4 domain, 2) Beclin-1 only interacts with wild-type but not with deleted bcl-2, and 3) BH4 domain removal from bcl-2 protein does not influence in vitro and in vivo growth of tumor cells expressing low levels of endogenous Beclin-1. These results provide new insight into molecular mechanism of bcl-2 functions and represent a rationale for the development of agents interfering with the BH4 domain of bcl-2 protein.
PMCID: PMC3593154  PMID: 23479509
3.  Bcl-2 Regulates HIF-1α Protein Stabilization in Hypoxic Melanoma Cells via the Molecular Chaperone HSP90 
PLoS ONE  2010;5(7):e11772.
Background
Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1α, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis.
Methodology/Principal Findings
By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1α protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1α protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1α protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1α stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1α degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1α protein. We also showed that bcl-2, HIF-1α and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1α protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1α protein during hypoxia, and in particular the isoform HSP90β is the main player in this phenomenon.
Conclusions/Significance
We identified the stabilization of HIF-1α protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the β isoform of molecular chaperone HSP90.
doi:10.1371/journal.pone.0011772
PMCID: PMC2910721  PMID: 20668552
4.  Toll-like Receptor 3 Regulates Angiogenesis and Apoptosis in Prostate Cancer Cell Lines through Hypoxia-Inducible Factor 1α1 
Neoplasia (New York, N.Y.)  2010;12(7):539-549.
Toll-like receptors (TLRs) recognize microbial/viral-derived components that trigger innate immune response and conflicting data implicate TLR agonists in cancer, either as protumor or antitumor agents. We previously demonstrated that TLR3 activation mediated by its agonist poly(I:C) induces antitumor signaling, leading to apoptosis of prostate cancer cells LNCaP and PC3 with much more efficiency in the former than in the second more aggressive line. The transcription factor hypoxia-inducible factor 1 (HIF-1) regulates several cellular processes, including apoptosis, in response to hypoxia and to other stimuli also in normoxic conditions. Here we describe a novel protumor machinery triggered by TLR3 activation in PC3 cells consisting of increased expression of the specific I.3 isoform of HIF-1α and nuclear accumulation of HIF-1 complex in normoxia, resulting in reduced apoptosis and in secretion of functional vascular endothelial growth factor (VEGF). Moreover, we report that, in the less aggressive LNCaP cells, TLR3 activation fails to induce nuclear accumulation of HIF-1α. However, the transfection of I.3 isoform of hif-1α in LNCaP cells allows poly(I:C)-induced HIF-1 activation, resulting in apoptosis protection and VEGF secretion. Altogether, our findings demonstrate that differences in the basal level of HIF-1α expression in different prostate cancer cell lines underlie their differential response to TLR3 activation, suggesting a correlation between different stages of malignancy, hypoxic gene expression, and beneficial responsiveness to TLR agonists.
PMCID: PMC2907580  PMID: 20651983

Results 1-4 (4)