PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (187)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
author:("goker, Markus")
1.  Genome sequence of Phaeobacter inhibens type strain (T5T), a secondary metabolite producing representative of the marine Roseobacter clade, and emendation of the species description of Phaeobacter inhibens 
Standards in Genomic Sciences  2013;9(2):334-350.
Strain T5T is the type strain of the species Phaeobacter inhibens Martens et al. 2006, a secondary metabolite producing bacterium affiliated to the Roseobacter clade. Strain T5T was isolated from a water sample taken at the German Wadden Sea, southern North Sea. Here we describe the complete genome sequence and annotation of this bacterium with a special focus on the secondary metabolism and compare it with the genomes of the Phaeobacter inhibens strains DSM 17395 and DSM 24588 (2.10), selected because of the close phylogenetic relationship based on the 16S rRNA gene sequences of these three strains. The genome of strain T5T comprises 4,130,897 bp with 3.923 protein-coding genes and shows high similarities in genetic and genomic characteristics compared to P. inhibens DSM 17395 and DSM 24588 (2.10). Besides the chromosome, strain T5T possesses four plasmids, three of which show a high similarity to the plasmids of the strains DSM 17395 and DSM 24588 (2.10). Analysis of the fourth plasmid suggested horizontal gene transfer. Most of the genes on this plasmid are not present in the strains DSM 17395 and DSM 24588 (2.10) including a nitrous oxide reductase, which allows strain T5T a facultative anaerobic lifestyle. The G+C content was calculated from the genome sequence and differs significantly from the previously published value, thus warranting an emendation of the species description.
doi:10.4056/sigs.4448212
PMCID: PMC4062626  PMID: 24976890
Anaerobic; motile; rod-shaped; tropodithietic acid; secondary metabolites; Rhodobacterales; Rhodobacteraceae
2.  Complete genome sequence of the marine methyl-halide oxidizing Leisingera methylohalidivorans type strain (DSM 14336T), a representative of the Roseobacter clade 
Standards in Genomic Sciences  2013;9(1):128-141.
Leisingera methylohalidivorans Schaefer et al. 2002 emend. Vandecandelaere et al. 2008 is the type species of the genus Leisingera. The genus belongs to the Roseobacter clade (Rhodobacteraceae, Alphaproteobacteria), a widely distributed lineage in marine environments. Leisingera and particularly L. methylohalidivorans strain MB2T is of special interest due to its methylotrophy. Here we describe the complete genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. The 4,650,996 bp long genome with its 4,515 protein-coding and 81 RNA genes consists of three replicons, a single chromosome and two extrachromosomal elements with sizes of 221 kb and 285 kb.
doi:10.4056/sigs.4297965
PMCID: PMC3910543  PMID: 24501651
Methylotrophy; methyl halides; extrachromosomal elements; Alphaproteobacteria; Rhodobacteraceae; Roseobacter clade; aerobe
3.  Genome sequence of Phaeobacter daeponensis type strain (DSM 23529T), a facultatively anaerobic bacterium isolated from marine sediment, and emendation of Phaeobacter daeponensis 
Standards in Genomic Sciences  2013;9(1):142-159.
TF-218T is the type strain of the species Phaeobacter daeponensis Yoon et al. 2007, a facultatively anaerobic Phaeobacter species isolated from tidal flats. Here we describe the draft genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. We analyzed the genome for genes involved in secondary metabolite production and its anaerobic lifestyle, which have also been described for its closest relative Phaeobacter caeruleus. The 4,642,596 bp long genome of strain TF-218T contains 4,310 protein-coding genes and 78 RNA genes including four rRNA operons and consists of five replicons: one chromosome and four extrachromosomal elements with sizes of 276 kb, 174 kb, 117 kb and 90 kb. Genome analysis showed that TF-218T possesses all of the genes for indigoidine biosynthesis, and on specific media the strain showed a blue pigmentation. We also found genes for dissimilatory nitrate reduction, gene-transfer agents, NRPS/ PKS genes and signaling systems homologous to the LuxR/I system.
doi:10.4056/sigs.4287962
PMCID: PMC3910554  PMID: 24501652
Marine microbiology; facultative anaerobe; indigoidine; Rhodobacteraceae; Roseobacter clade
4.  Genome sequence of Frateuria aurantia type strain (Kondô 67T), a xanthomonade isolated from Lilium auratium Lindl. 
Standards in Genomic Sciences  2013;9(1):83-92.
Frateuria aurantia (ex Kondô and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondô 67T was initially (1958) identified as a member of ‘Acetobacter aurantius’, a name that was not considered for the approved list. Kondô 67T was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondô 67T is the first member of the genus Frateura whose genome sequence has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.4338002
PMCID: PMC3910546  PMID: 24501647
strictly aerobic; motile; rod-shaped; acetogenic; mesophilic; ‘Acetobacter aurantius’; Xanthomonadaceae; GEBA
5.  Genome sequence of the moderately thermophilic sulfur-reducing bacterium Thermanaerovibrio velox type strain (Z-9701T) and emended description of the genus Thermanaerovibrio 
Standards in Genomic Sciences  2013;9(1):57-70.
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883T, the type strain of T. acidaminovorans, stain Z-9701T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.4237901
PMCID: PMC3910556  PMID: 24501645
obligate anaerobic; motile; curved rods; organotrophic; S0-reduction; cyanobacterial mat; Synergistaceae; Synergistetes; GEBA
6.  Genome sequence of the Litoreibacter arenae type strain (DSM 19593T), a member of the Roseobacter clade isolated from sea sand 
Standards in Genomic Sciences  2013;9(1):117-127.
Litoreibacter arenae Kim et al. 2012 is a member of the genomically well-characterized Rhodobacteraceae clade within the Roseobacter clade. Representatives of this clade are known to be metabolically versatile and involved in marine carbon-producing and biogeochemical processes. They form a physiologically heterogeneous group of Alphaproteobacteria and were mostly found in coastal or polar waters, especially in symbiosis with algae, in microbial mats, in sediments or together with invertebrates and vertebrates. Here we describe the features of L. arenae DSM 19593T, including novel aspects of its phenotype, together with the draft genome sequence and annotation. The 3,690,113 bp long genome consists of 17 scaffolds with 3,601 protein-coding and 56 RNA genes. This genome was sequenced as part of the activities of the Transregional Collaborative Research Centre 51 funded by the German Research Foundation (DFG).
doi:10.4056/sigs.4258318
PMCID: PMC3910544  PMID: 24501650
marine; rod-shaped; sea sand; sediment; motile; strictly aerobic; mesophile; chemoorganotrophic; halophilic; virus-like structures; carbon monoxide utilization; sulfur oxidation; Rhodobacteraceae; Alphaproteobacteria; Thalassobacter arenae
7.  Genome sequence of the chemoheterotrophic soil bacterium Saccharomonospora cyanea type strain (NA-134T) 
Standards in Genomic Sciences  2013;9(1):28-41.
Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyan blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
doi:10.4056/sigs.4207886
PMCID: PMC3910552  PMID: 24501643
draft genome; aerobic; chemoheterotrophic; Gram-positive; vegetative and aerial mycelia; spore-forming; non-motile; soil bacterium; Pseudonocardiaceae; CSP 2010
8.  Genome sequence of the Leisingera aquimarina type strain (DSM 24565T), a member of the marine Roseobacter clade rich in extrachromosomal elements 
Standards in Genomic Sciences  2013;8(3):389-402.
Leisingera aquimarina Vandecandelaere et al. 2008 is a member of the genomically well characterized Roseobacter clade within the family Rhodobacteraceae. Representatives of the marine Roseobacter clade are metabolically versatile and involved in carbon fixation and biogeochemical processes. They form a physiologically heterogeneous group, found predominantly in coastal or polar waters, especially in symbiosis with algae, in microbial mats, in sediments or associated with invertebrates. Here we describe the features of L. aquimarina DSM 24565T together with the permanent-draft genome sequence and annotation. The 5,344,253 bp long genome consists of one chromosome and an unusually high number of seven extrachromosomal elements and contains 5,129 protein-coding and 89 RNA genes. It was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2010 and of the activities of the Transregional Collaborative Research Centre 51 funded by the German Research Foundation (DFG).
doi:10.4056/sigs.3858183
PMCID: PMC3910692  PMID: 24501625
marine; biofilm; ovoid-shaped; halotolerant; heterotrophic; quorum sensing; plasmid; thiosulfate oxidation; carbon monoxide utilization; Rhodobacteraceae; Alphaproteobacteria
9.  Genome sequence of the reddish-pigmented Rubellimicrobium thermophilum type strain (DSM 16684T), a member of the Roseobacter clade 
Standards in Genomic Sciences  2013;8(3):480-490.
Rubellimicrobium thermophilum Denner et al. 2006 is the type species of the genus Rubellimicrobium, a representative of the Roseobacter clade within the Rhodobacteraceae. Members of this clade were shown to be abundant especially in coastal and polar waters, but were also found in microbial mats and sediments. They are metabolically versatile and form a physiologically heterogeneous group within the Alphaproteobacteria. Strain C-Ivk-R2A-2T was isolated from colored deposits in a pulp dryer; however, its natural habitat is so far unknown. Here we describe the features of this organism, together with the draft genome sequence and annotation and novel aspects of its phenotype. The 3,161,245 bp long genome contains 3,243 protein-coding and 45 RNA genes.
doi:10.4056/sigs.4247911
PMCID: PMC3910695  PMID: 24501632
rod-shaped; reddish-pigmented; thermophile; chemoheterotrophic; prophage-like structures; Rhodobacteraceae; Roseobacter clade; Alphaproteobacteria
10.  Genome sequence of the phage-gene rich marine Phaeobacter arcticus type strain DSM 23566T 
Standards in Genomic Sciences  2013;8(3):450-464.
Phaeobacter arcticus Zhang et al. 2008 belongs to the marine Roseobacter clade whose members are phylogenetically and physiologically diverse. In contrast to the type species of this genus, Phaeobacter gallaeciensis, which is well characterized, relatively little is known about the characteristics of P. arcticus. Here, we describe the features of this organism including the annotated high-quality draft genome sequence and highlight some particular traits. The 5,049,232 bp long genome with its 4,828 protein-coding and 81 RNA genes consists of one chromosome and five extrachromosomal elements. Prophage sequences identified via PHAST constitute nearly 5% of the bacterial chromosome and included a potential Mu-like phage as well as a gene-transfer agent (GTA). In addition, the genome of strain DSM 23566T encodes all of the genes necessary for assimilatory nitrate reduction. Phylogenetic analysis and intergenomic distances indicate that the classification of the species might need to be reconsidered.
doi:10.4056/sigs.383362
PMCID: PMC3910698  PMID: 24501630
aerobic; psychrophilic; motile; high-quality draft; prophage-like structures; extrachromosomal elements; assimilatory nitrate reduction; Alphaproteobacteria; Roseobacter clade
11.  Genome sequence of Phaeobacter caeruleus type strain (DSM 24564T), a surface-associated member of the marine Roseobacter clade 
Standards in Genomic Sciences  2013;8(3):403-419.
In 2009 Phaeobacter caeruleus was described as a novel species affiliated with the marine Roseobacter clade, which, in turn, belongs to the class Alphaproteobacteria. The genus Phaeobacter is well known for members that produce various secondary metabolites. Here we report of putative quorum sensing systems, based on the finding of six N-acyl-homoserine lactone synthetases, and show that the blue color of P. caeruleus is probably due to the production of the secondary metabolite indigoidine. Therefore, P. caeruleus might have inhibitory effects on other bacteria. In this study the genome of the type strain DSM 24564T was sequenced, annotated and characterized. The 5,344,419 bp long genome with its seven plasmids contains 5,227 protein-coding genes (3,904 with a predicted function) and 108 RNA genes.
doi:10.4056/sigs.3927623
PMCID: PMC3910702  PMID: 24501626
biofilm; motile; indigoidine; quorum sensing; siderophores; Rhodobacteraceae; Alphaproteobacteria
12.  Impacts of pr-10a Overexpression at the Molecular and the Phenotypic Level 
Biotechnological approaches using genetic modifications such as homologous gene overexpression can be used to decode gene functions under well-defined circumstances. However, only the recording of the resulting phenotypes allows inferences about the impact of the modification on the organisms’ evolutionary, ecological or economic performance. We here compare a potato wild-type cell line with two genetically engineered cell cultures homologously overexpressing Pathogenesis Related Protein 10a (pr-10a). A detailed analysis of the relative gene-expression patterns of pr-10a and its regulators sebf and pti4 over time provides insights into the molecular response of heterotrophic cells to distinct osmotic and salt-stress conditions. Furthermore, this system serves as an exemplar for the tracing of respiration kinetics as a faster and more sensitive alternative to the laborious and time-consuming recording of growth curves. The utility and characteristics of the resulting data type and the requirements for its appropriate analysis are figured out. It is demonstrated how this novel type of phenotypic information together with the gene-expression-data provides valuable insights into the effect of genetic modifications on the behaviour of cells on both the molecular and the macroscopic level.
doi:10.3390/ijms140715141
PMCID: PMC3742292  PMID: 23880863
pathogenesis related protein 10a; cell-respiration; TTC; Solanum tuberosum cv. Désirée
13.  Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055T) 
Standards in Genomic Sciences  2013;8(2):177-187.
Leptonema illini Hovind-Hougen 1979 is the type species of the genus Leptonema, family Leptospiraceae, phylum Spirochaetes. Organisms of this family have a Gram-negative-like cell envelope consisting of a cytoplasmic membrane and an outer membrane. The peptidoglycan layer is associated with the cytoplasmic rather than the outer membrane. The two flagella of members of Leptospiraceae extend from the cytoplasmic membrane at the ends of the bacteria into the periplasmic space and are necessary for their motility. Here we describe the features of the L. illini type strain, together with the complete genome sequence, and annotation. This is the first genome sequence (finished at the level of Improved High Quality Draft) to be reported from of a member of the genus Leptonema and a representative of the third genus of the family Leptospiraceae for which complete or draft genome sequences are now available. The three scaffolds of the 4,522,760 bp draft genome sequence reported here, and its 4,230 protein-coding and 47 RNA genes are part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.3637201
PMCID: PMC3746420  PMID: 23991250
Gram-negative; flexible; motile; cytoplasmatic tubules; non-sporulating; axial flagella; aerobic; chemoorganotrophic; Leptospiraceae; GEBA
14.  Genome sequence of the free-living aerobic spirochete Turneriella parva type strain (HT), and emendation of the species Turneriella parva 
Standards in Genomic Sciences  2013;8(2):228-238.
Turneriella parva Levett et al. 2005 is the only species of the genus Turneriella which was established as a result of the reclassification of Leptospira parva Hovind-Hougen et al. 1982. Together with Leptonema and Leptospira, Turneriella constitutes the family Leptospiraceae, within the order Spirochaetales. Here we describe the features of this free-living aerobic spirochete together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the genus Turneriella and the 13th member of the family Leptospiraceae for which a complete or draft genome sequence is now available. The 4,409,302 bp long genome with its 4,169 protein-coding and 45 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.3617113
PMCID: PMC3746428  PMID: 23991255
Gram-negative; motile; axial filaments; helical; flexible; non-sporulating; aerobic; mesophile; Leptospiraceae; GEBA
15.  Complete genome sequence of the halophilic bacterium Spirochaeta africana type strain (Z-7692T) from the alkaline Lake Magadi in the East African Rift 
Standards in Genomic Sciences  2013;8(2):165-176.
Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain of the species, Z-7692T, was isolated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strain to be published. The 3,285,855 bp long genome of strain Z-7692T with its 2,817 protein-coding and 57 RNA genes is a part of the G enomic E ncyclopedia of B acteria and A rchaea project.
doi:10.4056/sigs.3607108
PMCID: PMC3746417  PMID: 23991249
anaerobic; aerotolerant; mesophilic; halophilic; spiral-shaped; motile; periplasmic flagella; Gram-negative; chemoorganotrophic; Spirochaetaceae; GEBA
16.  Phylogeny-driven target selection for large-scale genome-sequencing (and other) projects 
Standards in Genomic Sciences  2013;8(2):360-374.
Despite the steadily decreasing costs of genome sequencing, prioritizing organisms for sequencing remains important in large-scale projects. Phylogeny-based selection is of interest to identify those organisms whose genomes can be expected to differ most from those that have already been sequenced. Here, we describe a method that infers a phylogenetic scoring independent of which set of organisms has previously been targeted, which is computationally simple and easy to apply in practice. The scoring itself, as well as pre- and post-processing of the data, is illustrated using two real-world examples in which the method has already been applied for selecting targets for genome sequencing. These projects are the JGI CSP Genomic Encyclopedia of Bacteria and Archaea phase I, targeting 1,000 type strains, and, on a smaller-scale, the phylogenomics of the Roseobacter clade. Potential artifacts of the method are discussed and compared to a selection approach based on the taxonomic classification.
doi:10.4056/sigs.3446951
PMCID: PMC3746418  PMID: 23991265
phylogenetic diversity; genomics; taxon selection; 16S rRNA; tree of life; Genomic Encyclopedia; Roseobacter clade
17.  Complete genome sequence of Coriobacterium glomerans type strain (PW2T) from the midgut of Pyrrhocoris apterus L. (red soldier bug) 
Standards in Genomic Sciences  2013;8(1):15-25.
Coriobacterium glomerans Haas and König 1988, is the only species of the genus Coriobacterium, family Coriobacteriaceae, order Coriobacteriales, phylum Actinobacteria. The bacterium thrives as an endosymbiont of pyrrhocorid bugs, i.e. the red fire bug Pyrrhocoris apterus L. The rationale for sequencing the genome of strain PW2T is its endosymbiotic life style which is rare among members of Actinobacteria. Here we describe the features of this symbiont, together with the complete genome sequence and its annotation. This is the first complete genome sequence of a member of the genus Coriobacterium and the sixth member of the order Coriobacteriales for which complete genome sequences are now available. The 2,115,681 bp long single replicon genome with its 1,804 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.3507020
PMCID: PMC3739169  PMID: 23961308
Gram-positive; non-motile; non-sporulating; obligatory anaerobic; chemoorganotroph; mesophile; endosymbiont; insect intestinal tract; Coriobacteriaceae; Actinobacteria; GEBA
18.  High-quality-draft genome sequence of the yellow-pigmented flavobacterium Joostella marina type strain (En5T) 
Standards in Genomic Sciences  2013;8(1):37-46.
At present, Joostella marina Quan et al. 2008 is the sole species with a validly published name in the genus Joostella, family Flavobacteriacae, phylum Bacteriodetes. It is a yellow-pigmented, aerobic, marine organism about which little has been reported other than the chemotaxonomic features required for initial taxonomic description. The genome of J. marina strain En5T complements a list of 16 Flavobacteriaceae strains for which complete genomes and draft genomes are currently available. Here we describe the features of this bacterium, together with the complete genome sequence, and annotation. This is the first member of the genus Joostella for which a complete genome sequence becomes available. The 4,508,243 bp long single replicon genome with its 3,944 protein-coding and 60 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.3537045
PMCID: PMC3739173  PMID: 23961310
Gram-negative; non-motile; aerobic; mesophile; Flavobacteriaceae; Bacteroidetes; GEBA
19.  Complete genome sequence of the moderate thermophile Anaerobaculum mobile type strain (NGAT) 
Standards in Genomic Sciences  2013;8(1):47-57.
Anaerobaculum mobile Menes and Muxí 2002 is one of three described species of the genus Anaerobaculum, family Synergistaceae, phylum Synergistetes. This anaerobic and motile bacterium ferments a range of carbohydrates and mono- and dicarboxylic acids with acetate, hydrogen and CO2 as end products. A. mobile NGAT is the first member of the genus Anaerobaculum and the sixth member of the phylum Synergistetes with a completely sequenced genome. Here we describe the features of this bacterium, together with the complete genome sequence, and annotation. The 2,160,700 bp long single replicon genome with its 2,053 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.3547050
PMCID: PMC3739175  PMID: 23961311
Gram-negative; rod-shaped; motile; flagellum; non-spore forming; anaerobic; chemoorganotrophic; crotonate-reducer; Synergistetes; Synergistaceae; GEBA
20.  Complete genome sequence of the bile-resistant pigment-producing anaerobe Alistipes finegoldii type strain (AHN2437T) 
Standards in Genomic Sciences  2013;8(1):26-36.
Alistipes finegoldii Rautio et al. 2003 is one of five species of Alistipes with a validly published name: family Rikenellaceae, order Bacteroidetes, class Bacteroidia, phylum Bacteroidetes. This rod-shaped and strictly anaerobic organism has been isolated mostly from human tissues. Here we describe the features of the type strain of this species, together with the complete genome sequence, and annotation. A. finegoldii is the first member of the genus Alistipes for which the complete genome sequence of its type strain is now available. The 3,734,239 bp long single replicon genome with its 3,302 protein-coding and 68 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.3527032
PMCID: PMC3739176  PMID: 23961309
Gram-negative; rod-shaped; non-sporulating; non-motile; mesophile; strictly anaerobic; chemoorganotrophic; Rikenellaceae; GEBA
21.  Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1T), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta comb. nov., and Treponema zuelzerae comb. nov., and emendation of the genus Treponema 
Standards in Genomic Sciences  2013;8(1):88-105.
Spirochaeta caldaria Pohlschroeder et al. 1995 is an obligately anaerobic, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain, H1T, was isolated in 1990 from cyanobacterial mat samples collected at a freshwater hot spring in Oregon, USA, and is of interest because it enhances the degradation of cellulose when grown in co-culture with Clostridium thermocellum. Here we provide a taxonomic re-evaluation for S. caldaria based on phylogenetic analyses of 16S rRNA sequences and whole genomes, and propose the reclassification of S. caldaria and two other Spirochaeta species as members of the emended genus Treponema. Whereas genera such as Borrelia and Sphaerochaeta possess well-distinguished genomic features related to their divergent lifestyles, the physiological and functional genomic characteristics of Spirochaeta and Treponema appear to be intermixed and are of little taxonomic value. The 3,239,340 bp long genome of strain H1T with its 2,869 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
doi:10.4056/sigs.3096473
PMCID: PMC3739177  PMID: 23961314
obligately anaerobic; thermophilic; spiral-shaped; motile; periplasmic flagella; Gram-negative; chemoorganotrophic; Spirochaetaceae; Spirochaeta; Treponema; GEBA
22.  Genomics and Physiology of a Marine Flavobacterium Encoding a Proteorhodopsin and a Xanthorhodopsin-Like Protein 
PLoS ONE  2013;8(3):e57487.
Proteorhodopsin (PR) photoheterotrophy in the marine flavobacterium Dokdonia sp. PRO95 has previously been investigated, showing no growth stimulation in the light at intermediate carbon concentrations. Here we report the genome sequence of strain PRO95 and compare it to two other PR encoding Dokdonia genomes: that of strain 4H-3-7-5 which shows the most similar genome, and that of strain MED134 which grows better in the light under oligotrophic conditions. Our genome analysis revealed that the PRO95 genome as well as the 4H-3-7-5 genome encode a protein related to xanthorhodopsins. The genomic environment and phylogenetic distribution of this gene suggest that it may have frequently been recruited by lateral gene transfer. Expression analyses by RT-PCR and direct mRNA-sequencing showed that both rhodopsins and the complete β-carotene pathway necessary for retinal production are transcribed in PRO95. Proton translocation measurements showed enhanced proton pump activity in response to light, supporting that one or both rhodopsins are functional. Genomic information and carbon source respiration data were used to develop a defined cultivation medium for PRO95, but reproducible growth always required small amounts of yeast extract. Although PRO95 contains and expresses two rhodopsin genes, light did not stimulate its growth as determined by cell numbers in a nutrient poor seawater medium that mimics its natural environment, confirming previous experiments at intermediate carbon concentrations. Starvation or stress conditions might be needed to observe the physiological effect of light induced energy acquisition.
doi:10.1371/journal.pone.0057487
PMCID: PMC3587595  PMID: 23526944
23.  Genome of the R-body producing marine alphaproteobacterium Labrenzia alexandrii type strain (DFL-11T) 
Standards in Genomic Sciences  2013;7(3):413-426.
Labrenzia alexandrii Biebl et al. 2007 is a marine member of the family Rhodobacteraceae in the order Rhodobacterales, which has thus far only partially been characterized at the genome level. The bacterium is of interest because it lives in close association with the toxic dinoflagellate Alexandrium lusitanicum. Ultrastructural analysis reveals R-bodies within the bacterial cells, which are primarily known from obligate endosymbionts that trigger “killing traits” in ciliates (Paramecium spp.). Genomic traits of L. alexandrii DFL-11T are in accordance with these findings, as they include the reb genes putatively involved in R-body synthesis. Analysis of the two extrachromosomal elements suggests a role in heavy-metal resistance and exopolysaccharide formation, respectively. The 5,461,856 bp long genome with its 5,071 protein-coding and 73 RNA genes consists of one chromosome and two plasmids, and has been sequenced in the context of the Marine Microbial Initiative.
doi:10.4056/sigs.3456959
PMCID: PMC3764935  PMID: 24019989
aerobe; motile; symbiosis; dinoflagellates; photoheterotroph; high-quality draft; Alexandrium lusitanicum; Alphaproteobacteria
24.  Genome of the marine alphaproteobacterium Hoeflea phototrophica type strain (DFL-43T) 
Standards in Genomic Sciences  2013;7(3):440-448.
Hoeflea phototrophica Biebl et al. 2006 is a member of the family Phyllobacteriaceae in the order Rhizobiales, which is thus far only partially characterized at the genome level. This marine bacterium contains the photosynthesis reaction-center genes pufL and pufM and is of interest because it lives in close association with toxic dinoflagellates such as Prorocentrum lima. The 4,467,792 bp genome (permanent draft sequence) with its 4,296 protein-coding and 69 RNA genes is a part of the Marine Microbial Initiative.
doi:10.4056/sigs.3486982
PMCID: PMC3764936  PMID: 24019991
aerobic; rod-shaped; motile; photoheterotroph; Phenotype MicroArray; bacteriochlorophyll a; symbiosis; dinoflagellates; Prorocentrum lima; Phyllobacteriaceae
25.  Genome sequence-based species delimitation with confidence intervals and improved distance functions 
BMC Bioinformatics  2013;14:60.
Background
For the last 25 years species delimitation in prokaryotes (Archaea and Bacteria) was to a large extent based on DNA-DNA hybridization (DDH), a tedious lab procedure designed in the early 1970s that served its purpose astonishingly well in the absence of deciphered genome sequences. With the rapid progress in genome sequencing time has come to directly use the now available and easy to generate genome sequences for delimitation of species. GBDP (Genome Blast Distance Phylogeny) infers genome-to-genome distances between pairs of entirely or partially sequenced genomes, a digital, highly reliable estimator for the relatedness of genomes. Its application as an in-silico replacement for DDH was recently introduced. The main challenge in the implementation of such an application is to produce digital DDH values that must mimic the wet-lab DDH values as close as possible to ensure consistency in the Prokaryotic species concept.
Results
Correlation and regression analyses were used to determine the best-performing methods and the most influential parameters. GBDP was further enriched with a set of new features such as confidence intervals for intergenomic distances obtained via resampling or via the statistical models for DDH prediction and an additional family of distance functions. As in previous analyses, GBDP obtained the highest agreement with wet-lab DDH among all tested methods, but improved models led to a further increase in the accuracy of DDH prediction. Confidence intervals yielded stable results when inferred from the statistical models, whereas those obtained via resampling showed marked differences between the underlying distance functions.
Conclusions
Despite the high accuracy of GBDP-based DDH prediction, inferences from limited empirical data are always associated with a certain degree of uncertainty. It is thus crucial to enrich in-silico DDH replacements with confidence-interval estimation, enabling the user to statistically evaluate the outcomes. Such methodological advancements, easily accessible through the web service at http://ggdc.dsmz.de, are crucial steps towards a consistent and truly genome sequence-based classification of microorganisms.
doi:10.1186/1471-2105-14-60
PMCID: PMC3665452  PMID: 23432962
Archaea; Bacteria; BLAST; DDH; GGD; GGDC; GBDP; Genomics; MUMmer; Phylogeny; Species concept; Taxonomy

Results 1-25 (187)