Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  The E3 Ubiquitin Ligase Activity of Trip12 Is Essential for Mouse Embryogenesis 
PLoS ONE  2011;6(10):e25871.
Protein ubiquitination is a post-translational protein modification that regulates many biological conditions [1], [2], [3], [4]. Trip12 is a HECT-type E3 ubiquitin ligase that ubiquitinates ARF and APP-BP1 [5], [6]. However, the significance of Trip12 in vivo is largely unknown. Here we show that the ubiquitin ligase activity of Trip12 is indispensable for mouse embryogenesis. A homozygous mutation in Trip12 (Trip12mt/mt) that disrupts the ubiquitin ligase activity resulted in embryonic lethality in the middle stage of development. Trip12mt/mt embryos exhibited growth arrest and increased expression of the negative cell cycle regulator p16 [7], [8], [9], [10]. In contrast, Trip12mt/mt ES cells were viable. They had decreased proliferation, but maintained both the undifferentiated state and the ability to differentiate. Trip12mt/mt ES cells had increased levels of the BAF57 protein (a component of the SWI/SNF chromatin remodeling complex) and altered gene expression patterns. These data suggest that Trip12 is involved in global gene expression and plays an important role in mouse development.
PMCID: PMC3196520  PMID: 22028794
2.  Reduced ATR or Chk1 Expression Leads to Chromosome Instability and Chemosensitization of Mismatch Repair–deficient Colorectal Cancer Cells 
Molecular Biology of the Cell  2009;20(17):3801-3809.
Genomic instability in colorectal cancer is categorized into two distinct classes: chromosome instability (CIN) and microsatellite instability (MSI). MSI is the result of mutations in the mismatch repair (MMR) machinery, whereas CIN is often thought to be associated with a disruption in the APC gene. Clinical data has recently shown the presence of heterozygous mutations in ATR and Chk1 in human cancers that exhibit MSI, suggesting that those mutations may contribute to tumorigenesis. To determine whether reduced activity in the DNA damage checkpoint pathway would cooperate with MMR deficiency to induce CIN, we used siRNA strategies to partially decrease the expression of ATR or Chk1 in MMR-deficient colorectal cancer cells. The resultant cancer cells display a typical CIN phenotype, as characterized by an increase in the number of chromosomal abnormalities. Importantly, restoration of MMR proficiency completely inhibited induction of the CIN phenotype, indicating that the combination of partial checkpoint blockage and MMR deficiency is necessary to trigger CIN. Moreover, disruption of ATR and Chk1 in MMR-deficient cells enhanced the sensitivity to treatment with the commonly used colorectal chemotherapeutic compound, 5-fluorouracil. These results provide a basis for the development of a combination therapy for those cancer patients.
PMCID: PMC2735479  PMID: 19570909
3.  Protein Phosphatase 5 Is Required for ATR-Mediated Checkpoint Activation 
Molecular and Cellular Biology  2005;25(22):9910-9919.
In response to DNA damage or replication stress, the protein kinase ATR is activated and subsequently transduces genotoxic signals to cell cycle control and DNA repair machinery through phosphorylation of a number of downstream substrates. Very little is known about the molecular mechanism by which ATR is activated in response to genotoxic insults. In this report, we demonstrate that protein phosphatase 5 (PP5) is required for the ATR-mediated checkpoint activation. PP5 forms a complex with ATR in a genotoxic stress-inducible manner. Interference with the expression or the activity of PP5 leads to impairment of the ATR-mediated phosphorylation of hRad17 and Chk1 after UV or hydroxyurea treatment. Similar results are obtained in ATM-deficient cells, suggesting that the observed defect in checkpoint signaling is the consequence of impaired functional interaction between ATR and PP5. In cells exposed to UV irradiation, PP5 is required to elicit an appropriate S-phase checkpoint response. In addition, loss of PP5 leads to premature mitosis after hydroxyurea treatment. Interestingly, reduced PP5 activity exerts differential effects on the formation of intranuclear foci by ATR and replication protein A, implicating a functional role for PP5 in a specific stage of the checkpoint signaling pathway. Taken together, our results suggest that PP5 plays a critical role in the ATR-mediated checkpoint activation.
PMCID: PMC1280286  PMID: 16260606

Results 1-3 (3)