PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-20 (20)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
1.  Novel, Oxygen-Insensitive Group 5 [NiFe]-Hydrogenase in Ralstonia eutropha 
Applied and Environmental Microbiology  2013;79(17):5137-5145.
Recently, a novel group of [NiFe]-hydrogenases has been defined that appear to have a great impact in the global hydrogen cycle. This so-called group 5 [NiFe]-hydrogenase is widespread in soil-living actinobacteria and can oxidize molecular hydrogen at atmospheric levels, which suggests a high affinity of the enzyme toward H2. Here, we provide a biochemical characterization of a group 5 hydrogenase from the betaproteobacterium Ralstonia eutropha H16. The hydrogenase was designated an actinobacterial hydrogenase (AH) and is catalytically active, as shown by the in vivo H2 uptake and by activity staining in native gels. However, the enzyme does not sustain autotrophic growth on H2. The AH was purified to homogeneity by affinity chromatography and consists of two subunits with molecular masses of 65 and 37 kDa. Among the electron acceptors tested, nitroblue tetrazolium chloride was reduced by the AH at highest rates. At 30°C and pH 8, the specific activity of the enzyme was 0.3 μmol of H2 per min and mg of protein. However, an unexpectedly high Michaelis constant (Km) for H2 of 3.6 ± 0.5 μM was determined, which is in contrast to the previously proposed low Km of group 5 hydrogenases and makes atmospheric H2 uptake by R. eutropha most unlikely. Amperometric activity measurements revealed that the AH maintains full H2 oxidation activity even at atmospheric oxygen concentrations, showing that the enzyme is insensitive toward O2.
doi:10.1128/AEM.01576-13
PMCID: PMC3753944  PMID: 23793632
2.  Autotrophic Production of Stable-Isotope-Labeled Arginine in Ralstonia eutropha Strain H16 
Applied and Environmental Microbiology  2012;78(22):7884-7890.
With the aim of improving industrial-scale production of stable-isotope (SI)-labeled arginine, we have developed a system for the heterologous production of the arginine-containing polymer cyanophycin in recombinant strains of Ralstonia eutropha under lithoautotrophic growth conditions. We constructed an expression plasmid based on the cyanophycin synthetase gene (cphA) of Synechocystis sp. strain PCC6308 under the control of the strong PcbbL promoter of the R. eutropha H16 cbbc operon (coding for autotrophic CO2 fixation). In batch cultures growing on H2 and CO2 as sole sources of energy and carbon, respectively, the cyanophycin content of cells reached 5.5% of cell dry weight (CDW). However, in the absence of selection (i.e., in antibiotic-free medium), plasmid loss led to a substantial reduction in yield. We therefore designed a novel addiction system suitable for use under lithoautotrophic conditions. Based on the hydrogenase transcription factor HoxA, this system mediated stabilized expression of cphA during lithoautotrophic cultivation without the need for antibiotics. The maximum yield of cyanophycin was 7.1% of CDW. To test the labeling efficiency of our expression system under actual production conditions, cells were grown in 10-liter-scale fermentations fed with 13CO2 and 15NH4Cl, and the 13C/15N-labeled cyanophycin was subsequently extracted by treatment with 0.1 M HCl; 2.5 to 5 g of [13C/15N]arginine was obtained per fed-batch fermentation, corresponding to isotope enrichments of 98.8% to 99.4%.
doi:10.1128/AEM.01972-12
PMCID: PMC3485953  PMID: 22941075
3.  Crystallization and preliminary X-ray crystallographic analysis of the [NiFe]-hydrogenase maturation factor HypF1 from Ralstonia eutropha H16 
The hydrogenase maturation factor HypF1 from R. eutropha H16 was successfully crystallized and data sets were collected to a maximum resolution of 1.65 Å.
The hydrogenase maturation factor HypF1 is a truncated but functional version of the HypF protein. HypF is known to be involved in the supply of the CN− ligands of the active site of [NiFe]-hydrogenases, utilizing carbamoyl phosphate as a substrate. The first crystallization and preliminary X-ray studies of HypF1 from Ralstonia eutropha H16 are reported here. Crystals of HypF1 (394 amino acids, 40.7 kDa) were obtained by the sitting-drop vapour-diffusion technique using sodium formate as a precipitant. The crystals belonged to space group I222, with unit-cell parameters a = 79.7, b = 91.6, c = 107.2 Å. Complete X-ray diffraction data sets were collected at 100 K from native crystals and from a platinum derivative to a maximum resolution of 1.65 Å.
doi:10.1107/S1744309110006196
PMCID: PMC2852342  PMID: 20383020
hydrogenases; maturation; cyanide ligands; HypF1; NiFe cofactor
4.  Complete Genome Sequence of the Type Strain Cupriavidus necator N-1 ▿ †  
Journal of Bacteriology  2011;193(18):5017.
Here we announce the complete genome sequence of the copper-resistant bacterium Cupriavidus necator N-1, the type strain of the genus Cupriavidus. The genome consists of two chromosomes and two circular plasmids. Based on genome comparison, the chromosomes of C. necator N-1 share a high degree of similarity with the two chromosomal replicons of the bioplastic-producing hydrogen bacterium Ralstonia eutropha H16. The two strains differ in their plasmids and the presence of hydrogenase genes, which are absent in strain N-1.
doi:10.1128/JB.05660-11
PMCID: PMC3165677  PMID: 21742890
5.  The Maturation Factors HoxR and HoxT Contribute to Oxygen Tolerance of Membrane-Bound [NiFe] Hydrogenase in Ralstonia eutropha H16 ▿ †  
Journal of Bacteriology  2011;193(10):2487-2497.
The membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha H16 undergoes a complex maturation process comprising cofactor assembly and incorporation, subunit oligomerization, and finally twin-arginine-dependent membrane translocation. Due to its outstanding O2 and CO tolerance, the MBH is of biotechnological interest and serves as a molecular model for a robust hydrogen catalyst. Adaptation of the enzyme to oxygen exposure has to take into account not only the catalytic reaction but also biosynthesis of the intricate redox cofactors. Here, we report on the role of the MBH-specific accessory proteins HoxR and HoxT, which are key components in MBH maturation at ambient O2 levels. MBH-driven growth on H2 is inhibited or retarded at high O2 partial pressure (pO2) in mutants inactivated in the hoxR and hoxT genes. The ratio of mature and nonmature forms of the MBH small subunit is shifted toward the precursor form in extracts derived from the mutant cells grown at high pO2. Lack of hoxR and hoxT can phenotypically be restored by providing O2-limited growth conditions. Analysis of copurified maturation intermediates leads to the conclusion that the HoxR protein is a constituent of a large transient protein complex, whereas the HoxT protein appears to function at a final stage of MBH maturation. UV-visible spectroscopy of heterodimeric MBH purified from hoxR mutant cells points to alterations of the Fe-S cluster composition. Thus, HoxR may play a role in establishing a specific Fe-S cluster profile, whereas the HoxT protein seems to be beneficial for cofactor stability under aerobic conditions.
doi:10.1128/JB.01427-10
PMCID: PMC3133145  PMID: 21441514
6.  Ralstonia eutropha H16 Flagellation Changes According to Nutrient Supply and State of Poly(3-Hydroxybutyrate) Accumulation▿  
Applied and Environmental Microbiology  2008;74(14):4477-4490.
Two-dimensional polyacrylamide gel electrophoresis (2D PAGE), in combination with matrix-assisted laser desorption ionization-time of flight analysis, and the recently revealed genome sequence of Ralstonia eutropha H16 were employed to detect and identify proteins that are differentially expressed during different phases of poly(3-hydroxybutyric acid) (PHB) metabolism. For this, a modified protein extraction protocol applicable to PHB-harboring cells was developed to enable 2D PAGE-based proteome analysis of such cells. Subsequently, samples from (i) the exponential growth phase, (ii) the stationary growth phase permissive for PHB biosynthesis, and (iii) a phase permissive for PHB mobilization were analyzed. Among several proteins exhibiting quantitative changes during the time course of a cultivation experiment, flagellin, which is the main protein of bacterial flagella, was identified. Initial investigations that report on changes of flagellation for R. eutropha were done, but 2D PAGE and electron microscopic examinations of cells revealed clear evidence that R. eutropha exhibited further significant changes in flagellation depending on the life cycle, nutritional supply, and, in particular, PHB metabolism. The results of our study suggest that R. eutropha is strongly flagellated in the exponential growth phase and loses a certain number of flagella in transition to the stationary phase. In the stationary phase under conditions permissive for PHB biosynthesis, flagellation of cells admittedly stagnated. However, under conditions permissive for intracellular PHB mobilization after a nitrogen source was added to cells that are carbon deprived but with full PHB accumulation, flagella are lost. This might be due to a degradation of flagella; at least, the cells stopped flagellin synthesis while normal degradation continued. In contrast, under nutrient limitation or the loss of phasins, cells retained their flagella.
doi:10.1128/AEM.00440-08
PMCID: PMC2493158  PMID: 18502919
7.  Requirements for Heterologous Production of a Complex Metalloenzyme: the Membrane-Bound [NiFe] Hydrogenase 
Journal of Bacteriology  2005;187(18):6590-6595.
By taking advantage of the tightly clustered genes for the membrane-bound [NiFe] hydrogenase of Ralstonia eutropha H16, broad-host-range recombinant plasmids were constructed carrying the entire membrane-bound hydrogenase (MBH) operon encompassing 21 genes. We demonstrate that the complex MBH biosynthetic apparatus is actively produced in hydrogenase-free hosts yielding fully assembled and functional MBH protein.
doi:10.1128/JB.187.18.6590-6595.2005
PMCID: PMC1236620  PMID: 16159796
8.  The Soluble NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha H16 Consists of Six Subunits and Can Be Specifically Activated by NADPH 
Journal of Bacteriology  2005;187(9):3122-3132.
The soluble [NiFe]-hydrogenase (SH) of the facultative lithoautotrophic proteobacterium Ralstonia eutropha H16 has up to now been described as a heterotetrameric enzyme. The purified protein consists of two functionally distinct heterodimeric moieties. The HoxHY dimer represents the hydrogenase module, and the HoxFU dimer constitutes an NADH-dehydrogenase. In the bimodular form, the SH mediates reduction of NAD+ at the expense of H2. We have purified a new high-molecular-weight form of the SH which contains an additional subunit. This extra subunit was identified as the product of hoxI, a member of the SH gene cluster (hoxFUYHWI). Edman degradation, in combination with protein sequencing of the SH high-molecular-weight complex, established a subunit stoichiometry of HoxFUYHI2. Cross-linking experiments indicated that the two HoxI subunits are the closest neighbors. The stability of the hexameric SH depended on the pH and the ionic strength of the buffer. The tetrameric form of the SH can be instantaneously activated with small amounts of NADH but not with NADPH. The hexameric form, however, was also activated by adding small amounts of NADPH. This suggests that HoxI provides a binding domain for NADPH. A specific reaction site for NADPH adds to the list of similarities between the SH and mitochondrial NADH:ubiquinone oxidoreductase (Complex I).
doi:10.1128/JB.187.9.3122-3132.2005
PMCID: PMC1082810  PMID: 15838039
9.  A DNA Region Recognized by the Nitric Oxide-Responsive Transcriptional Activator NorR Is Conserved in β- and γ-Proteobacteria 
Journal of Bacteriology  2004;186(23):7980-7987.
The σ54-dependent regulator NorR activates transcription of target genes in response to nitric oxide (NO) or NO-generating agents. In Ralstonia eutropha H16, NorR activates transcription of the dicistronic norAB operon that encodes NorA, a protein of unknown function, and NorB, a nitric oxide reductase. A constitutively activating NorR derivative (NorR′), in which the N-terminal signaling domain was replaced by MalE, specifically bound to the norAB upstream region as revealed by gel retardation analysis. Within a 73-bp DNA segment protected by MalE-NorR′ in a DNase I footprint assay, three conserved inverted repeats, GGT-(N7)-ACC (where N is any base), that we consider to be NorR-binding boxes were identified. Mutations altering the spacing or the base sequence of these repeats resulted in an 80 to 90% decrease of transcriptional activation by wild-type NorR. Genome database analyses demonstrate that the GT-(N7)-AC core of the inverted repeat is found in several proteobacteria upstream of gene loci encoding proteins of nitric oxide metabolism, including nitric oxide reductase (NorB), flavorubredoxin (NorV), NO dioxygenase (Hmp), and hybrid cluster protein (Hcp).
doi:10.1128/JB.186.23.7980-7987.2004
PMCID: PMC529094  PMID: 15547270
10.  Functional Analysis by Site-Directed Mutagenesis of the NAD+-Reducing Hydrogenase from Ralstonia eutropha 
Journal of Bacteriology  2002;184(22):6280-6288.
The tetrameric cytoplasmic [NiFe] hydrogenase (SH) of Ralstonia eutropha couples the oxidation of hydrogen to the reduction of NAD+ under aerobic conditions. In the catalytic subunit HoxH, all six conserved motifs surrounding the [NiFe] site are present. Five of these motifs were altered by site-directed mutagenesis in order to dissect the molecular mechanism of hydrogen activation. Based on phenotypic characterizations, 27 mutants were grouped into four different classes. Mutants of the major class, class I, failed to grow on hydrogen and were devoid of H2-oxidizing activity. In one of these isolates (HoxH I64A), H2 binding was impaired. Class II mutants revealed a high D2/H+ exchange rate relative to a low H2-oxidizing activity. A representative (HoxH H16L) displayed D2/H+ exchange but had lost electron acceptor-reducing activity. Both activities were equally affected in class III mutants. Mutants forming class IV showed a particularly interesting phenotype. They displayed O2-sensitive growth on hydrogen due to an O2-sensitive SH protein.
doi:10.1128/JB.184.22.6280-6288.2002
PMCID: PMC151951  PMID: 12399498
11.  Characterization of the norB Gene, Encoding Nitric Oxide Reductase, in the Nondenitrifying Cyanobacterium Synechocystis sp. Strain PCC6803 
A norB gene encoding a putative nitric oxide reductase is present in the genome of the nondenitrifying cyanobacterium Synechocystis sp. strain PCC6803. The gene product belongs to the quinol-oxidizing single-subunit class of nitric oxide reductases, discovered recently in the denitrifier Ralstonia eutropha. Heterologous complementation of a nitric oxide reductase-negative mutant of R. eutropha with norB from Synechocystis restored nitric oxide reductase activity. With reduced menadione as the electron donor, an enzymatic activity of 101 nmol of NO per min per mg of protein was obtained with membrane fractions of Synechocystis wild-type cells. Virtually no nitric oxide reductase activity was present in a norB-negative mutant of Synechocystis. Growing cells of this mutant are more sensitive toward NO than wild-type cells, indicating that the presence of a nitric oxide reductase is beneficial for Synechocystis when the cells are exposed to NO. Transcriptional fusions with the chloramphenicol acetyltransferase reporter gene were constructed to monitor norB expression in Synechocystis. Transcription of norB was not enhanced by the addition of the NO-generating agent sodium nitroprusside.
doi:10.1128/AEM.68.2.668-672.2002
PMCID: PMC126718  PMID: 11823206
12.  Involvement of hyp Gene Products in Maturation of the H2-Sensing [NiFe] Hydrogenase of Ralstonia eutropha 
Journal of Bacteriology  2001;183(24):7087-7093.
The biosynthesis of [NiFe] hydrogenases is a complex process that requires the function of the Hyp proteins HypA, HypB, HypC, HypD, HypE, HypF, and HypX for assembly of the H2-activating [NiFe] site. In this study we examined the maturation of the regulatory hydrogenase (RH) of Ralstonia eutropha. The RH is a H2-sensing [NiFe] hydrogenase and is required as a constituent of a signal transduction chain for the expression of two energy-linked [NiFe] hydrogenases. Here we demonstrate that the RH regulatory activity was barely affected by mutations in hypA, hypB, hypC, and hypX and was not substantially diminished in hypD- and hypE-deficient strains. The lack of HypF, however, resulted in a 90% decrease of the RH regulatory activity. Fourier transform infrared spectroscopy and the incorporation of 63Ni into the RH from overproducing cells revealed that the assembly of the [NiFe] active site is dependent on all Hyp functions, with the exception of HypX. We conclude that the entire Hyp apparatus (HypA, HypB, HypC, HypD, HypE, and HypF) is involved in an efficient incorporation of the [NiFe] center into the RH.
doi:10.1128/JB.183.24.7087-7093.2001
PMCID: PMC95556  PMID: 11717266
13.  The H2 Sensor of Ralstonia eutropha Is a Member of the Subclass of Regulatory [NiFe] Hydrogenases 
Journal of Bacteriology  2000;182(10):2716-2724.
Two energy-generating hydrogenases enable the aerobic hydrogen bacterium Ralstonia eutropha (formerly Alcaligenes eutrophus) to use molecular hydrogen as the sole energy source. The complex synthesis of the nickel-iron-containing enzymes has to be efficiently regulated in response to H2, which is available in low amounts in aerobic environments. H2 sensing in R. eutropha is achieved by a hydrogenase-like protein which controls the hydrogenase gene expression in concert with a two-component regulatory system. In this study we show that the H2 sensor of R. eutropha is a cytoplasmic protein. Although capable of H2 oxidation with redox dyes as electron acceptors, the protein did not support lithoautotrophic growth in the absence of the energy-generating hydrogenases. A specifically designed overexpression system for R. eutropha provided the basis for identifying the H2 sensor as a nickel-containing regulatory protein. The data support previous results which showed that the sensor has an active site similar to that of prototypic [NiFe] hydrogenases (A. J. Pierik, M. Schmelz, O. Lenz, B. Friedrich, and S. P. J. Albracht, FEBS Lett. 438:231–235, 1998). It is demonstrated that in addition to the enzymatic activity the regulatory function of the H2 sensor is nickel dependent. The results suggest that H2 sensing requires an active [NiFe] hydrogenase, leaving the question open whether only H2 binding or subsequent H2 oxidation and electron transfer processes are necessary for signaling. The regulatory role of the H2-sensing hydrogenase of R. eutropha, which has also been investigated in other hydrogen-oxidizing bacteria, is intimately correlated with a set of typical structural features. Thus, the family of H2 sensors represents a novel subclass of [NiFe] hydrogenases denoted as the “regulatory hydrogenases.”
PMCID: PMC101976  PMID: 10781538
14.  Ralstonia eutropha TF93 Is Blocked in Tat-Mediated Protein Export 
Journal of Bacteriology  2000;182(3):581-588.
Ralstonia eutropha (formerly Alcaligenes eutrophus) TF93 is pleiotropically affected in the translocation of redox enzymes synthesized with an N-terminal signal peptide bearing a twin arginine (S/T-R-R-X-F-L-K) motif. Immunoblot analyses showed that the catalytic subunits of the membrane-bound [NiFe] hydrogenase (MBH) and the molybdenum cofactor-binding periplasmic nitrate reductase (Nap) are mislocalized to the cytoplasm and to the inner membrane, respectively. Moreover, physiological studies showed that the copper-containing nitrous oxide reductase (NosZ) was also not translocated to the periplasm in strain TF93. The cellular localization of enzymes exported by the general secretion system was unaffected. The translocation-arrested MBH and Nap proteins were enzymatically active, suggesting that twin-arginine signal peptide-dependent redox enzymes may have their cofactors inserted prior to transmembrane export. The periplasmic destination of MBH, Nap, and NosZ was restored by heterologous expression of Azotobacter chroococcum tatA mobilized into TF93. tatA encodes a bacterial Hcf106-like protein, a component of a novel protein transport system that has been characterized in thylakoids and shown to translocate folded proteins across the membrane.
PMCID: PMC94318  PMID: 10633089
15.  Positive Transcriptional Feedback Controls Hydrogenase Expression in Alcaligenes eutrophus H16 
Journal of Bacteriology  1999;181(18):5684-5692.
The protein HoxA is the central regulator of the Alcaligenes eutrophus H16 hox regulon, which encodes two hydrogenases, a nickel permease and several accessory proteins required for hydrogenase biosynthesis. Expression of the regulatory gene hoxA was analyzed. Screening of an 8-kb region upstream of hoxA with a promoter probe vector localized four promoter activities. One of these was found in the region immediately 5′ of hoxA; the others were correlated with the nickel metabolism genes hypA1, hypB1, and hypX. All four activities were independent of HoxA and of the minor transcription factor ς54. Translational fusions revealed that hoxA is expressed constitutively at low levels. In contrast to these findings, immunoblotting studies revealed a clear fluctuation in the HoxA pool in response to conditions which induce the hox regulon. Quantitative transcript assays indicated elevated levels of hyp mRNA under hydrogenase-derepressing conditions. Using interposon mutagenesis, we showed that the activity of a remote promoter is required for hydrogenase expression and autotrophic growth. Site-directed mutagenesis revealed that PMBH, which directs transcription of the structural genes of the membrane-bound hydrogenase, contributes to the expression of hoxA under hydrogenase-derepressing conditions. Thus, expression of the hox regulon is governed by a positive feedback loop mediating amplification of the regulator HoxA. These results imply the existence of an unusually large (ca. 17,000-nucleotide) transcript.
PMCID: PMC94088  PMID: 10482509
16.  A Megaplasmid-Borne Anaerobic Ribonucleotide Reductase in Alcaligenes eutrophus H16 
Journal of Bacteriology  1999;181(16):4919-4928.
The conjugative 450-kb megaplasmid pHG1 is essential for the anaerobic growth of Alcaligenes eutrophus H16 in the presence of nitrate as the terminal electron acceptor. We identified two megaplasmid-borne genes (nrdD and nrdG) which are indispensable under these conditions. Sequence alignment identified significant similarity of the 76.2-kDa gene product NrdD and the 30.9-kDa gene product NrdG with anaerobic class III ribonucleotide reductases and their corresponding activases. Deletion of nrdD and nrdG in A. eutrophus abolished anaerobic growth and led to the formation of nondividing filamentous cells, a typical feature of bacteria whose DNA synthesis is blocked. Enzyme activity of NrdD-like ribonucleotide reductases is dependent on a stable radical at a glycine residue in a conserved C-terminal motif. A mutant of A. eutrophus with a G650A exchange in NrdD showed the DNA-deficient phenotype as the deletion strain, suggesting that G650 forms the glycyl radical. Analysis of transcriptional and translational fusions indicate that nrdD and nrdG are cotranscribed and that the translation efficiency of nrdD is 40-fold higher than that of nrdG. Thus, the two proteins NrdD and NrdG are not synthesized at a stoichiometric level.
PMCID: PMC93980  PMID: 10438763
17.  Transcriptional Regulation of Alcaligenes eutrophus Hydrogenase Genes 
Journal of Bacteriology  1998;180(12):3197-3204.
Alcaligenes eutrophus H16 produces a soluble hydrogenase (SH) and a membrane-bound hydrogenase (MBH) which catalyze the oxidation of H2, supplying the organism with energy for autotrophic growth. The promoters of the structural genes for the SH and the MBH, PSH and PMBH, respectively, were identified by means of the primer extension technique. Both promoters were active in vivo under hydrogenase-derepressing conditions but directed only low levels of transcription under conditions which repressed hydrogenase synthesis. The cellular pools of SH and MBH transcripts under the different growth conditions correlated with the activities of the respective promoters. Also, an immediate and drastic increase in transcript pool levels occurred upon derepression of the hydrogenase system. Both promoters were dependent on the minor sigma factor ς54 and on the hydrogenase regulator HoxA in vivo. PSH was stronger than PMBH under both heterotrophic and autotrophic growth conditions. The two promoters were induced at approximately the same rates upon derepression of the hydrogenase system in diauxic cultures. The response regulator HoxA mediated low-level activation of PSH and PMBH in a heterologous system.
PMCID: PMC107822  PMID: 9620971
18.  Subforms and In Vitro Reconstitution of the NAD-Reducing Hydrogenase of Alcaligenes eutrophus 
Journal of Bacteriology  1998;180(5):1023-1029.
The cytoplasmic, NAD-reducing hydrogenase (SH) of Alcaligenes eutrophus H16 is a heterotetrameric enzyme which contains several cofactors and undergoes a complex maturation during biogenesis. HoxH is the Ni-carrying subunit, and together with HoxY it forms the hydrogenase dimer. HoxF and HoxU represent the flavin-containing diaphorase moiety, which is closely related to NADH:ubiquinone oxidoreductase and mediates NADH oxidation. A variety of mutations were introduced into the four SH structural genes to obtain mutant enzymes composed of monomeric and dimeric forms. A deletion removing most of hoxF, hoxU, and hoxY led to the expression of a HoxH monomer derivative which was proteolytically processed at the C terminus like the wild-type polypeptide. While the hydrogenase dimer, produced by a strain deleted of hoxF and hoxU, displayed H2-dependent dye-reducing activity, the monomeric form did not mediate the activation of H2, although nickel was incorporated into HoxH. Deletion of hoxH and hoxY led to the production of HoxFU dimers which displayed NADH:oxidoreductase activity. Mixing the hydrogenase and the diaphorase moieties in vitro reconstituted the structure and catalytic function of the SH holoenzyme.
PMCID: PMC106987  PMID: 9495738
19.  Determinants Encoding Resistance to Several Heavy Metals in Newly Isolated Copper-Resistant Bacteria 
Applied and Environmental Microbiology  1991;57(11):3079-3085.
Three copper-resistant, gram-negative bacteria were isolated and characterized. Of the three strains, Alcaligenes denitrificans AH tolerated the highest copper concentration (MIC = 4 mM CuSO4). All three strains showed various levels of resistance to other metal ions. A. denitrificans AH contains sequences which cross-hybridized with the mer (mercury resistance) determinant of Tn21 and the czc (cobalt, zinc, and cadmium resistance), cnr (cobalt and nickel resistance), and chr (chromate resistance) determinants of A. eutrophus CH34. DNA-DNA hybridization with probes prepared from A. eutrophus CH34 and Tn21 revealed the presence of chr-, cnr-, and mer-like sequences on the 200-kb plasmid pHG27 and of czc, cnr, and mer homologs located on the chromosome. The second strain, classified as Alcaligenes sp. strain PW, carries czc, cnr, and mer homologs on the 240-kb plasmid pHG29-c and a chr determinant on the 290-kb plasmid pHG29-a; a third plasmid, the 260-kb large plasmid pHG29-b, is cryptic. In contrast to the Alcaligenes strains, which were isolated from metal-contaminated water, Pseudomonas paucimobilis CD was isolated from the air. This strain harbors two cryptic plasmids: the 210-kb large plasmid pHG28-a and the 40-kb plasmid pHG28-b. Southern analysis revealed no homology between the metal ion resistance determinants of A. eutrophus CH34 and P. paucimobilis CD.
Images
PMCID: PMC183930  PMID: 16348575
20.  Transfer and Expression of Lithoautotrophy and Denitrification in a Host Lacking These Metabolic Activities 
Applied and Environmental Microbiology  1988;54(12):3173-3176.
The conjugative 450-kilobase-pair megaplasmid pHG1 from Alcaligenes eutrophus H16 was transferred to the herbicide-degrading soil bacterium A. eutrophus JMP134. This transfer was achieved by means of RP4 mobilization and a Tn5-Mob insertion provided in trans on the megaplasmid replicon. Although kanamycin-resistant transconjugants also occurred with other gram-negative species such as Rhizobium, Agrobacterium, and thiobacteria, A. eutrophus JMP134 was the only recipient which stably maintained the megaplasmid. pHG1-containing transconjugants derived from JMP134 expressed all metabolic functions associated with the plasmid: the ability to oxidize hydrogen through catalysis of two hydrogenases, to assimilate carbon dioxide via the Calvin cycle pathway, and to grow with nitrate anaerobically. All of these metabolic activities were absent in the original strain JMP134.
Images
PMCID: PMC204446  PMID: 16347808

Results 1-20 (20)