PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (25)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Force-plate quantification of progressive behavioral deficits in the R6/2 mouse model of Huntington’s disease 
Behavioural brain research  2009;202(1):130-137.
The R6/2 mouse is a popular model of Huntington’s disease (HD) because of its rapid progression and measurable behavioral phenotype. Yet current behavioral phenotyping methods are usually univariate (e.g., latency to fall from a rotarod) and labor intensive. We used a force-plate actometer and specialized computer algorithms to partition the data into topographically specific behavioral categories that were sensitive to HD-like abnormalities. Seven R6/2 male mice and 7 wild type (WT) controls were placed in a 42 cm X 42 cm force-plate actometer for 20-min recording sessions at 6–7, 8–9, 10–11 and 12–13 weeks of age. Distance traveled, number of wall rears, and number of straight runs (traveling 175 mm or more in 1.5 s) were reduced in R6/2 relative to WT mice at all ages tested. Low mobility bouts (each defined as remaining continuously in a virtual circle of 15 mm radius for 5 s) were increased in R6/2 mice at 6–7 wk and beyond. Independent of body weight, force off-load during wall rears was reduced in R6/2 mice except at 6–7 wk. Power spectra of force variation during straight runs indicated an age-related progressive loss of rhythmicity in R6/2 compared to WT, suggesting gait dysrhythmia and dysmetria. Collectively, these data, which extend results obtained with other widely different behavioral phenotyping methods, document a multifaceted syndrome of motor abnormalities in R6/2 mice. We suggest, moreover, that the force-plate actometer offers a high-throughput tool for screening drugs that may affect symptom expression in R6/2 or other HD model mice.
doi:10.1016/j.bbr.2009.03.022
PMCID: PMC3711515  PMID: 19447289
2.  Timing and space usage are disrupted by amphetamine in rats maintained on DRL 24-s and DRL 72-s schedules of reinforcement 
Psychopharmacology  2009;204(2):213-225.
Rationale
A differential-reinforcement-of-low-rate schedule (DRL) delivers reinforcement only when the interresponse time (IRT) exceeds a fixed time interval, thereby shaping rats to discriminate the timing of their responses. However, little is known about the motor behavior and location of the rats in the chamber during the IRTs that lead to reinforcement. Although amphetamine is known to disrupt DRL timing behavior, the effects of this drug on non-operant motor behavior during DRL performance has not yet been quantified.
Objective
The purpose of this research was to measure the motor behavior (movement trajectories in the horizontal plane and spatial location in the plane) during longer IRT’s after either vehicle or amphetamine treatment.
Method
Experimental chambers were constructed with a force-plate actometer as the floor, and while performing the operant task, the rats’ motor behaviors were measured continuously with high temporal and spatial resolution. Separate groups of 8 male Sprague Dawley rats were maintained on either DRL 24-s or DRL 72-s schedules of water reinforcement in 4-hr recording sessions.
Results
Analyses of IRT distributions showed that the rats’ timing behavior conformed to their respective DRL requirements. In the absence of drug, analysis of motor behavior in pre-reinforcement intervals showed that rats located themselves away from the operandum, and exhibited very low levels of movement. Rats exhibited a significant temporal diminution of horizontal movement that reached a minimum 4–8 s before the rats moved to the operandum to execute operant responses. Amphetamine treatment increased locomotion, abolished the temporal movement gradient, and brought the rats closer to the operandum compared to vehicle treatment. Movement changes induced by amphetamine were accompanied by degraded timing behavior.
Conclusions
Taken together, the data show that DRL training induced rats to locate themselves away from the operandum and to remain nearly motionless during longer IRTs, and that amphetamine treatment interfered with this complex of behavioral features
doi:10.1007/s00213-008-1451-x
PMCID: PMC3708684  PMID: 19142629
Differential reinforcement of low rate; DRL 72 s; d-amphetamine; temporal discrimination; focused stereotypy; sensitization; force-plate actometer; rat
3.  Differential sensitivity of cranial and limb motor function to nigrostriatal dopamine depletion 
Behavioural brain research  2012;237:157-163.
The present study determined the differential effects of unilateral striatal dopamine depletion on cranial motor versus limb motor function. Forty male Long Evans rats were first trained on a comprehensive motor testing battery that dissociated cranial versus limb motor function and included: cylinder forepaw placement, single pellet reaching, vermicelli pasta handling; sunflower seed opening, pasta biting acoustics, and a licking task. Following baseline testing, animals were randomized to either a 6-hydroxydopamine (6-OHDA) (n = 20) or control (n = 20) group. Animals in the 6-OHDA group received unilateral intrastriatal 6-OHDA infusions to induce striatal dopamine depletion. Six-weeks following infusion, all animals were re-tested on the same battery of motor tests. Near infrared densitometry was performed on sections taken through the striatum that were immunohistochemically stained for tyrosine hydroxylase (TH). Animals in the 6-OHDA condition showed a mean reduction in TH staining of 88.27%. Although 6-OHDA animals were significantly impaired on all motor tasks, limb motor deficits were more severe than cranial motor impairments. Further, performance on limb motor tasks was correlated with degree of TH depletion while performance on cranial motor impairments showed no significant correlation. These results suggest that limb motor function may be more sensitive to striatal dopaminergic depletion than cranial motor function and is consistent with the clinical observation that therapies targeting the nigrostriatal dopaminergic system in Parkinson’s disease are more effective for limb motor symptoms than cranial motor impairments.
doi:10.1016/j.bbr.2012.09.031
PMCID: PMC3614355  PMID: 23018122
6-Hydroxydopamine; Parkinson’s disease; Rodent; Licking; Reaching; Cranial motor; Limb motor
4.  Bone Marrow Transplantation Alters the Tremor Phenotype in the Murine Model of Globoid-Cell Leukodystrophy 
Tremor is a prominent phenotype of the twitcher mouse, an authentic genetic model of Globoid-Cell Leukodystrophy (GLD, Krabbe’s disease). In the current study, the tremor was quantified using a force-plate actometer designed to accommodate low-weight mice. The actometer records the force oscillations caused by a mouse’s movements, and the rhythmic structure of the force variations can be revealed. Results showed that twitcher mice had significantly increased power across a broad band of higher frequencies compared to wildtype mice. Bone marrow transplantation (BMT), the only available therapy for GLD, worsened the tremor in the twitcher mice and induced a measureable alteration of movement phenotype in the wildtype mice. These data highlight the damaging effects of conditioning radiation and BMT in the neonatal period. The behavioral methodology used herein provides a quantitative approach for assessing the efficacy of potential therapeutic interventions for Krabbe’s disease.
doi:10.3390/jcm1010001
PMCID: PMC3765017  PMID: 24013457
bone marrow transplantation; lysosomal storage disease; tremor; galactosylceramidase; globoid-cell leukodystrophy
5.  Effects of Acute Pramipexole on Preference for Gambling-like Schedules of Reinforcement in Rats 
Psychopharmacology  2010;213(1):11-18.
Rationale
Pramipexole and other direct dopamine agonist medications have been implicated in the development of impulsive behavior such as pathological gambling among those taking the drug to control symptoms of Parkinson’s disease or restless leg syndrome. Few laboratory studies examining pramipexole’s effects on gambling-like behavior have been conducted.
Objectives
The present study used a rodent model approximating some aspects of human gambling to examine within-subject effects of acute pramipexole (0.03, 0.1, 0.18, & 0.3 mg/kg) on rat’s choices to earn food reinforcement by completing variable-ratio (i.e., gambling-like) or fixed-ratio response requirements.
Results
In a condition in which the variable-ratio alternative was rarely selected, all but the lowest dose of pramipexole significantly increased choice of the variable-ratio alternative (an average of 15% above saline).. The same doses did not affect choice significantly in a control condition designed to evaluate the involvement of nonspecific drug effects. Pramipexole increased latencies to initiate trials (+ 9.12 s) and to begin response runs on forced-choice trials (variable-ratio: + 0.21 s; fixed-ratio: + 0.88 s), but did not affect measures of response perseveration (conditional probabilities of “staying”).
Conclusions
The findings are consistent with clinical reports linking pramipexole to the expression of increased gambling in humans. Results are discussed in the context of neurobehavioral evidence suggesting that dopamine agonists increase sensitivity to reward delay and disrupt appropriate feedback from negative outcomes.
doi:10.1007/s00213-010-2006-5
PMCID: PMC3747984  PMID: 20814781
pramipexole; dopamine agonist; gambling; impulsive behavior; Parkinson’s disease; rat
6.  Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats 
Brain research  2012;1450:148-156.
Huntington’s disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15 months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats.
doi:10.1016/j.brainres.2012.02.042
PMCID: PMC3677762  PMID: 22418060
dopamine; Huntington’s disease; microelectrodes; voltammetry; behavior; transgenic
7.  Differential Acquisition of Lever Pressing in Inbred and Outbred Mice: Comparison of One-Lever and Two-Lever Procedures and Correlation with Differences in Locomotor Activity 
Recent progress in mouse genetics has led to an increased interest in developing procedures for assessing mouse behavior, but relatively few of the behavioral procedures developed involve positively reinforced operant behavior. When operant methods are used, nose poking, not lever pressing, is the target response. In the current study differential acquisition of milk-reinforced lever pressing was observed in five inbred strains (C57BL/6J, DBA/2J, 129X1/SvJ, C3H/HeJ, and BALB/cJ) and one outbred stock (CD-1) of mice. Regardless of whether one or two levers (an “operative” and “inoperative” lever) were in the operant chamber, a concomitant variable-time fixed-ratio schedule of milk reinforcement established lever pressing in the majority of mice within two 120-min sessions. Substantial differences in lever pressing were observed across mice and between procedures. Adding an inoperative lever retarded acquisition in C57BL/6J, DBA/2J, 129X1/SvJ, and C3H/HeJ mice, but not in CD-1 and BALB/cJ mice. Locomotor activity was positively correlated with number of lever presses in both procedures. Analyses of durations of the subcomponents (e.g., time to move from hopper to lever) of operant behavior revealed further differences among the six types of mice. Together, the data suggest that appetitively reinforced lever pressing can be acquired rapidly in mice and that a combination of procedural, behavioral, and genetic variables contributes to this acquisition.
doi:10.1901/jeab.2005.95-04
PMCID: PMC1389771  PMID: 16596969
behavioral genetics; operant acquisition; one-lever; two-lever; concomitant schedule; lever press; mice
8.  SENSORIMOTOR BEHAVIORAL TESTS FOR USE IN A JUVENILE RAT MODEL OF TRAUMATIC BRAIN INJURY: ASSESSMENT OF SEX DIFFERENCES 
Journal of neuroscience methods  2011;199(2):214-222.
Modeling juvenile traumatic brain injury (TBI) in rodents presents several unique challenges compared to adult TBI, one of which is selecting appropriate sensorimotor behavioral tasks that enable the assessment of the extent of injury and recovery over time in developing animals. To address this challenge, we performed a comparison of common sensorimotor tests in Long-Evans rats of various sizes and developmental stages (postnatal days 16–45, 35–190 g). Tests were compared and selected for their developmental appropriateness, scalability for growth, pre-training requirements, and throughput capability. Sex differences in response to TBI were also assessed. Grid walk, automated gait analysis, rotarod, beam walk, spontaneous forelimb elevation test, and measurement of motor activity using the force-plate actometer were evaluated. Grid walk, gait analysis, and rotarod failed to meet one or more of the evaluation criteria. Beam walk, spontaneous forelimb elevation test, and measurement of motor activity using the force-plate actometer satisfied all criteria and were capable of detecting motor abnormalities in rats subjected to controlled cortical impact on postnatal day 17. No sex differences were detected in the acute effects of TBI or functional recovery during the 28 days after injury using these tests. This demonstrates the utility of these tests for the evaluation of sensorimotor function in studies using rat models of pediatric TBI, and suggest that pre-pubertal males and females respond similarly to TBI with respect to sensorimotor outcomes.
doi:10.1016/j.jneumeth.2011.05.008
PMCID: PMC3142868  PMID: 21600923
Traumatic brain injury; juvenile; forelimb; hindlimb; actometer; beam walk; controlled cortical impact; sensorimotor
9.  Bone Marrow Transplantation Augments the Effect of Brain- and Spinal Cord-Directed Adeno-Associated Virus 2/5 Gene Therapy by Altering Inflammation in the Murine Model of Globoid-Cell Leukodystrophy 
The Journal of Neuroscience  2011;31(27):9945-9957.
Globoid-cell leukodystrophy (GLD) is an inherited demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC). A previous study in the murine model of GLD (twitcher) demonstrated a dramatic synergy between CNS-directed adeno-associated virus 2/5 (AAV2/5) gene therapy and myeloreductive bone marrow transplantation (BMT). However, the mechanism by which these two disparate therapeutic approaches synergize is not clear. In addition, the therapeutic efficacy may have been limited since the CNS-directed gene therapy was restricted to the forebrain and thalamus. In the current study, intrathecal and intracerebellar injections were added to the therapeutic regimen and the mechanism of synergy between BMT and gene therapy was determined. Although AAV2/5 alone provided supraphysiological levels of GALC activity and reduced psychosine levels in both the brain and spinal cord, it significantly increased CNS inflammation. Bone marrow transplantation alone provided essentially no GALC activity to the CNS and did not reduce psychosine levels. When AAV2/5 is combined with BMT, there are sustained improvements in motor function and the median life span is increased to 123 d (range, 92–282 d) compared with 41 d in the untreated twitcher mice. Interestingly, addition of BMT virtually eliminates both the disease and AAV2/5-associated inflammatory response. These data suggest that the efficacy of AAV2/5-mediated gene therapy is limited by the associated inflammatory response and BMT synergizes with AAV2/5 by modulating inflammation.
doi:10.1523/JNEUROSCI.1802-11.2011
PMCID: PMC3348856  PMID: 21734286
10.  Long-term Effects of Multiple Glucocorticoid Exposures in Neonatal Mice 
Behavioral sciences  2011;1(1):4-30.
Glucocorticoids (GCs) such as dexamethasone (DEX) or betamethasone are repeatedly administered for up to a month to prematurely born infants as a treatment for chronic lung dysfunction. Results of clinical trials have shown that the use of GCs in these infants induces long-term deficits in neuromotor function and cognition. We have previously shown that a single exposure to clinically relevant doses of DEX or other GCs in the mouse during a period corresponding to the human perinatal period produces a dramatic increase in apoptotic cell death of neural progenitor cells in the developing cerebellum. To provide a model approximating more chronic clinical dosing regimens, we evaluated possible behavioral effects resulting from repeated exposures to DEX and subsequent GC-induced neuronal loss where neonatal mouse pups were injected with 3.0 mg/kg DEX or saline on postnatal days 7, 9, and 11 (DEX3 treatment). Adult, DEX3-treated mice exhibited long-term, possibly permanent, neuromotor deficits on a complex activity wheel task, which requires higher-order motor co-ordination skills. DEX3 mice exhibited impaired performance on this task relative to saline controls in each of two independent studies involving separate cohorts of mice. Histopathology studies utilizing stereological neuronal counts conducted in behaviorally-tested mice showed that the DEX3 treatment resulted in a significant decrease in the number of neurons in the internal granule layer (IGL) of the cerebellum, although the number of neurons in the Purkinje cell layer were unchanged. The results suggest that multiple neonatal DEX exposures can produce chronic deficits in fine motor co-ordination that are associated with cerebellar IGL neuronal loss.
doi:10.3390/behavsci1010004
PMCID: PMC3286606  PMID: 22375274
glucocorticoid; dexamethasone; neuromotor deficits; motor co-ordination; complex activity wheel; cerebellum; internal granule layer; neuron loss; apoptotic cell death
11.  Long-term Effects of Multiple Glucocorticoid Exposures in Neonatal Mice 
Behavioral Sciences  2011;1(1):4-30.
Glucocorticoids (GCs) such as dexamethasone (DEX) or betamethasone are repeatedly administered for up to a month to prematurely born infants as a treatment for chronic lung dysfunction. Results of clinical trials have shown that the use of GCs in these infants induces long-term deficits in neuromotor function and cognition. We have previously shown that a single exposure to clinically relevant doses of DEX or other GCs in the mouse during a period corresponding to the human perinatal period produces a dramatic increase in apoptotic cell death of neural progenitor cells in the developing cerebellum. To provide a model approximating more chronic clinical dosing regimens, we evaluated possible behavioral effects resulting from repeated exposures to DEX and subsequent GC-induced neuronal loss where neonatal mouse pups were injected with 3.0 mg/kg DEX or saline on postnatal days 7, 9, and 11 (DEX3 treatment). Adult, DEX3-treated mice exhibited long-term, possibly permanent, neuromotor deficits on a complex activity wheel task, which requires higher-order motor co-ordination skills. DEX3 mice exhibited impaired performance on this task relative to saline controls in each of two independent studies involving separate cohorts of mice. Histopathology studies utilizing stereological neuronal counts conducted in behaviorally-tested mice showed that the DEX3 treatment resulted in a significant decrease in the number of neurons in the internal granule layer (IGL) of the cerebellum, although the number of neurons in the Purkinje cell layer were unchanged. The results suggest that multiple neonatal DEX exposures can produce chronic deficits in fine motor co-ordination that are associated with cerebellar IGL neuronal loss.
doi:10.3390/behavsci1010004
PMCID: PMC3286606  PMID: 22375274
glucocorticoid; dexamethasone; neuromotor deficits; motor co-ordination; complex activity wheel; cerebellum; internal granule layer; neuron loss; apoptotic cell death
12.  EFFECTS OF WHITE AND INFRARED LIGHTING ON APOMORPHINE-INDUCED PECKING IN PIGEONS 
Behavioural pharmacology  2008;19(4):347-352.
The present experiment was concerned with the role of environment in the production and form of apomorphine-induced pecking of pigeons. Previous literature has suggested that the pecking occurs even when pigeons are placed in complete darkness, but there are no systematic or quantitative reports of such pecking. Six pigeons were tested with doses of 0.1, 0.3, and 1.0 mg/kg apomorphine. Tests were made in conditions of white and infrared light. The apparatus employed novel force transduction measures that provided for both the detection of a peck as well as its peak forcefulness. At the lowest dose tested, apomorphine elicited pecking when the pigeon was placed in white light, but not when the dose was examined under infrared lighting. As the dose increased, however, pecking was observed regardless of lighting condition. No differences were found in forcefulness of pecking as a function of lighting condition or dose. Though response output was seemingly unaffected by the lighting condition at higher doses, videotaped analysis revealed important changes in the formal characteristics of pecking. In white light, apomorphine elicited pecking at stimuli in the chamber (e.g., screw heads or the pigeon’s own toes), whereas in infrared light pecking was directed at the floor directly in front of the pigeon. Such differences may be attributable to shifts in control to other stimulus modalities when vision in limited. Additionally, apomorphine may have direct effects on retinal dopamine function modulating the expression of pecking in the dark.
doi:10.1097/FBP.0b013e32830990ac
PMCID: PMC3198829  PMID: 18622183
Apomorphine; Stereotypy; Infrared light; White light; Force; Pigeon; Peck
13.  Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome 
ACS chemical neuroscience  2010;1(10):679-690.
In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.
doi:10.1021/cn100032f
PMCID: PMC2992329  PMID: 21116467
fragile X syndrome; dopamine; amphetamine; focused stereotypy; striatum; voltammetry
14.  Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome 
ACS Chemical Neuroscience  2010;1(10):679-690.
In this study, we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared with wild-type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared with WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding predrug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.
doi:10.1021/cn100032f
PMCID: PMC2992329  PMID: 21116467
Fragile X syndrome; dopamine; amphetamine; focused stereotypy; striatum; voltammetry
15.  Within-Session Analysis of Amphetamine-Elicited Rotation Behavior Reveals Differences between Young Adult and Middle-Aged F344/BN Rats with Partial Unilateral Striatal Dopamine Depletion 
Preclinical modeling of Parkinson's disease using 6-hydroxydopamine (6-OHDA) has been valuable in developing and testing therapeutic strategies. Recent efforts have focused on modeling early stages of disease by infusing 6-OHDA into the striatum. The partial DA depletion that follows intrastriatal 6-OHDA is more variable than the near complete depletion following medial forebrain bundle infusion, and behavioral screening assays are not as well characterized in the partial lesion model. We compared relationships between amphetamine-elicited rotation behavior and DA depletion following intrastriatal 6-OHDA (12.5 μg) in 6 month vs. 18 month F344/BN rats, at 2-weeks and 6-weeks post-lesion. We compared the total number of rotations with within-session (bin-by-bin) parameters of rotation behavior as indicators of DA depletion. Striatal DA depletion was greater in the young adult than in the middle-aged rats at 2 weeks but not at 6 weeks post-lesion. The total number of rotations for the whole session and striatal DA depletion did not differ between the two age groups. Regression analysis revealed a greater relationship between within-session parameters of rotation behavior and DA depletion in the middle-aged group than in the young adult group. These results have implications for estimating DA depletion in preclinical studies using rats of different ages.
doi:10.1016/j.pbb.2010.06.014
PMCID: PMC3164977  PMID: 20600242
Parkinson's disease; animal models; behavioral assay; basal ganglia; rotation; striatum; amphetamine
16.  DEVELOPMENTAL EFFECTS OF DIETARY N-3 FATTY ACIDS ON ACTIVITY AND RESPONSE TO NOVELTY 
Physiology & behavior  2010;101(1):176-183.
Insufficient availability of n-3 polyunsaturated fatty acids (PUFA) during pre- and neonatal development decreases accretion of docosahexaenoic acid (DHA, 22:6n-3) in the developing brain. Low tissue levels of DHA are associated with neurodevelopmental disorders including attention deficit hyperactivity disorder (ADHD). In this study, 1st-and 2nd-litter male Long-Evans rats were raised from conception on a Control diet containing α-linolenic acid (4.20 g/kg diet), the dietarily essential fatty acid precursor of DHA, or a diet Deficient in α-linolenic acid (0.38 g/kg diet). The Deficient diet resulted in a decrease in brain phospholipid DHA of 48% in 1st-litter pups and 65% in 2nd-litter pups. Activity, habituation, and response to spatial change in a familiar environment were assessed in a single-session behavioral paradigm at postnatal days 28 and 70, inclusive. Activity and habituation varied by age with younger rats exhibiting higher activity, less habituation, and less stimulation of activity induced by spatial novelty. During the first and second exposures to the test chamber, 2nd-litter Deficient pups exhibited higher levels of activity than Control rats or 1st-litter Deficient pups and less habituation during the first exposure, but were not more active after introduction of a novel spatial stimulus. The higher level of activity in a familiar environment, but not after introduction of a novel stimulus is consistent with clinical observations in ADHD. The observation of this effect only in 2nd-litter rats fed the Deficient diet suggests that brain DHA content, rather than dietary n-3 PUFA content, likely underlies these effects.
doi:10.1016/j.physbeh.2010.04.038
PMCID: PMC2923479  PMID: 20457171
polyunsaturated fatty acid; omega-3; docosahexaenoic acid; rat; brain; locomotor activity; novelty; habituation; force-plate actometer
17.  Dopamine D2 receptor function is compromised in the brain of the methionine sulfoxide reductase A knockout mouse 
Journal of neurochemistry  2010;114(1):51-61.
Previous research suggests that brain oxidative stress and altered rodent locomotor behavior are linked. We observed bio-behavioral changes in methionine sulfoxide reductase A knockout mice associated with abnormal dopamine signaling. Compromised ability of these knockout mice to reduce methionine sulfoxide enhances accumulation of sulfoxides in proteins. We examined the dopamine D2-receptor function and expression, which has an atypical arrangement and quantity of methionine residues. Indeed, protein expression levels of dopamine D2-receptor were higher in knockout mice compared with wild-type. However, the binding of dopamine D2-receptor agonist was compromised in the same fractions of knockout mice. Coupling efficiency of dopamine D2-receptors to G-proteins was also significantly reduced in knockout mice, supporting the compromised agonist binding. Furthermore, pre-synaptic dopamine release in knockout striatal sections was less responsive than control sections to dopamine D2-receptor ligands. Behaviorally, the locomotor activity of knockout mice was less responsive to the inhibitory effect of quinpirole than wild-type mice. Involvement of specific methionine residue oxidation in the dopamine D2-receptor third intracellular loop is suggested by in vitro studies. We conclude that ablation of methionine sulfoxide reductase can affect dopamine signaling through altering dopamine D2-receptor physiology and may be related to symptoms associated with neurological disorders and diseases.
doi:10.1111/j.1471-4159.2010.06721.x
PMCID: PMC2933736  PMID: 20374422
dopamine; dopamine receptor; locomotor activity; methionine oxidation; oxidative stress; post-translation modification
18.  Effects of Pramipexole on Impulsive Choice in Male Wistar Rats 
Clinical reports, primarily with Parkinson’s patients, note an association between the prescribed use of pramipexole (and other direct-acting dopamine agonist medications) and impulse control disorders, particularly pathological gambling. Two experiments examined the effects of acute pramipexole on rats’ impulsive choices where impulsivity was defined as selecting a smaller-sooner over a larger-later food reward. In Experiment 1, pramipexole (0.1 to 0.3 mg/kg) significantly increased impulsive choices in a condition in which few impulsive choices were made during a stable baseline. In a control condition, in which impulsive choices predominated during baseline, pramipexole did not significantly change the same rats’ choices. Experiment 2 explored a wider range of doses (0.01 to 0.3 mg/kg) using a choice procedure in which delays to the larger-later reinforcer delivery increased across trial blocks within each session. At the doses used in Experiment 1, pramipexole shifted choice toward indifference regardless of the operative delay. At lower doses of pramipexole (0.01 & 0.03 mg/kg), a trend toward more impulsive choice was observed at the 0.03 mg/kg dose. The difference in outcomes across experiments may be due to the more complex discriminations required in Experiment 2; i.e., multiple discriminations between changing delays within each session.
doi:10.1037/a0019244
PMCID: PMC3021944  PMID: 20545391
Pramipexole; D2/D3 agonist; Impulsivity; Choice; Gambling
19.  METHYLPHENIDATE ATTENUATES RATS’ PREFERENCE FOR A NOVEL SPATIAL STIMULUS INTRODUCED INTO A FAMILIAR ENVIRONMENT: ASSESSMENT USING A FORCE PLATE ACTOMETER 
Journal of neuroscience methods  2010;189(1):36-43.
Methylphenidate is a psychostimulant widely used in the treatment of attention deficit hyperactivity disorder (ADHD). Here we report a novel paradigm that affords inferences about habituation and attention to a novel stimulus in a familiar environment in a single test session without prior training of the animals. The paradigm was used to assess the effects of methylphenidate (2.5 and 5.0 mg/kg, sc) in young adult, male, Long-Evans rats. Methylphenidate increased locomotor activity during the initial exposure to the test apparatus in a non-dose-related manner. However, upon introduction of a novel spatial stimulus (an alcove) in the familiar environment, methylphenidate-treatment resulted in dose-related increases in distance traveled and inhibition of long dwell times in the alcove, the latter behavior being characteristic of vehicle-treated rats’ response to the alcove condition. These results demonstrate the utility of this paradigm in the elucidation of the behavioral effects of a drug commonly used in the treatment of ADHD. Findings also suggest that species-typical response preferences in rats (e.g., refuge-seeking) may emerge in experimental settings that add spatial novelty to otherwise featureless test enclosures commonly used to assess locomotor activity.
doi:10.1016/j.jneumeth.2010.03.014
PMCID: PMC2864804  PMID: 20346982
spatial stimulus; novelty; attention; actometer; methylphenidate; rat
20.  Caloric restriction alleviates abnormal locomotor activity and dopamine levels in the brain of the methionine sulfoxide reductase A knockout mouse 
Neuroscience letters  2009;468(1):38-41.
Oxidative stress is associated with the aging process, a risk factor for neurodegenerative diseases, and decreased by reduced energy intake. Oxidative modifications can affect protein function; the sulfur-containing amino acids, including methionine, are particularly susceptible to oxidation. A methionine sulfoxide can be enzymatically reduced by the methionine sulfoxide reductase (Msr) system. Previously, we have shown that MsrA−/− mice exhibit altered locomotor activity and brain dopamine levels as function of age. Previous studies have demonstrated that a caloric restriction enhances antioxidant defense and reduces the action of reactive oxygen species. Here we examine locomotor behavior and dopamine levels of MsrA−/− mice after caloric restriction starting at 8 months of age and ending at 17 months. The MsrA−/− mice did not have any significant difference in spontaneous distance traveled when compared to controls at 17 months of age. In contrast, our previous report showed decreased locomotor activity in the MsrA−/− mice at 12 months of age and older when fed ad-libitum. After completion of the caloric restriction diet, dopamine levels were comparable to control mice. This differs from the abnormal dopamine levels previously observed in MsrA−/− mice fed ad-libitum. Thus, caloric restriction had a neutralization effect on MsrA ablation. In summary, it is suggested that caloric restriction alleviates abnormal locomotor activity and dopamine levels in the brain of the methionine sulfoxide reductase A knockout mouse.
doi:10.1016/j.neulet.2009.10.058
PMCID: PMC2787794  PMID: 19854239
Oxidative stress; Protein oxidation; Caloric restriction; Locomotor activity; Dopamine; Aging
21.  Dysregulation of coordinated neuronal firing patterns in striatum of freely behaving transgenic rats that model Huntington’s disease 
Neurobiology of disease  2009;37(1):106-113.
Altered neuronal activity in the striatum appears to be a key component of Huntington’s disease (HD), a fatal, neurodegenerative condition. To assess this hypothesis in freely behaving transgenic rats that model HD (tgHDs), we used chronically implanted micro-wires to record the spontaneous activity of striatal neurons. We found that relative to wild-type controls, HD rats suffer from population-level deficits in striatal activity characterized by a loss of correlated firing and fewer episodes of coincident spike bursting between simultaneously recorded neuronal pairs. These results are in line with our previous report of marked alterations in the pattern of striatal firing in mouse models of HD that vary in background strain, genetic construct, and symptom severity. Thus, loss of coordinated spike activity in striatum appears to be a common feature of HD pathophysiology, regardless of HD model variability.
doi:10.1016/j.nbd.2009.09.013
PMCID: PMC2787873  PMID: 19818852
Huntington’s disease; Transgenic; Rat; Striatum; Medium spiny neurons; Electrophysiology; Cross-correlation; Burst; Basal ganglia
22.  Effects of Differing Response-Force Requirements on Food-Maintained Responding in C57Bl/6J Mice 
The effect of force requirements on response effort was examined using inbred C57BL/6J mice trained to press a disk with their snout. Lateral peak forces greater than 2 g were defined as responses (i.e., all responses above the measurement threshold). Different, higher force requirements were used to define criterion responses (a subclass of all responses) that exceeded the requirement and produced a reinforcer. The reinforcer was sweetened, condensed milk, delivered upon response termination. All mice were exposed to two ascending series of criterion force requirements (2, 4, 8, 16, and 32 g). Increasing the force requirement initially decreased criterion response rates, but criterion response rates recovered with continued exposure, except at the 32-g requirement. Response rates for all measured responses initially increased with increasing force requirements, but then decreased with continued exposure. The second exposure series produced more stable response rate changes than the first series. The time-integral of force (area under the force–time curve for individual responses, which is proportional to energy expenditure for each response) increased with the increase in the force requirement. The C57BL/6J inbred strain generated average force output similar to CD-1 outbred stock mice trained on the same force requirements. C57BL/6J inbred strain mice differed from CD-1 mice in initial response rates (for all responses above threshold) and had lower response rates at the 16 and 32 g requirements resulting in lower total force output. These data show for both mice types that increased force requirements resulted in increased overall responding (all measured responses), which contradicts a punishment interpretation of criterion response decrements. C57BL\6 inbred mice showed individual differences comparable to the outbred CD-1 stock. C57BL/6 mice did not maintain responding as well at the higher force requirements, which may be due to their small body size and weight, compared to the larger and heavier CD-1 mice.
doi:10.1901/jeab.2009.92-257
PMCID: PMC2732322  PMID: 20354603
operant; effort; force; disk press; C57BL/6J mice
23.  The MsrA knockout mouse exhibits abnormal behavior and brain dopamine levels 
Free radical biology & medicine  2008;45(2):193-200.
Oxidative stress can cause methionine oxidation that has been implicated in various proteins malfunctions, if not adequately reduced by the methionine sulfoxide reductase system. Recent evidence has found oxidized methionine residues in neurodegenerative conditions. Previously, we have described elevated levels of brain pathologies and an abnormal walking pattern in the methionine sulfoxide reductase A knockout (MsrA−/−) mouse. Here we show that MsrA−/− mice have compromised complex task learning capabilities relative to wild-type mice. Likewise, MsrA−/− mice exhibit lower locomotor activity and altered gait that exacerbated with age. Furthermore, MsrA−/− mice were less responsive to amphetamine treatment. Consequently, brain dopamine levels were determined. Surprisingly, relative to wild-type mice, MsrA−/− brains contained significantly higher levels of dopamine up to 12 months of age, while lower level of dopamine was observed at 16 months of age. Moreover, striatal regions of MsrA−/− mice showed an increase of dopamine release parallel to observed dopamine levels. Similarly, the expression pattern of tyrosine hydroxylase activating protein correlated with the age-dependent dopamine levels. Thus, it is suggested that dopamine regulation and signaling pathway are impaired in MsrA−/− mice, which may contribute to their abnormal bio-behavior. These observations may be relevant to age-related neurological diseases associated with oxidative stress.
doi:10.1016/j.freeradbiomed.2008.04.003
PMCID: PMC2516552  PMID: 18466776
dopamine; oxidative stress; methionine oxidation; neurodegenerative diseases
24.  An Inexpensive Infrared Detector to Verify The Delivery of Food Pellets 
The reproducibility of experimental outcomes depends on consistent control of independent variables. In food-maintained operant performance, it is of utmost importance that the quantity of food delivered is reliable. To that end, some commercial food pellet dispensers have add-on attachments to sense the delivery of pellets. Not all companies, however, offer such add-ons. Aside from availability, cost and temporary reduction in throughput may be a problem for smaller labs. The present paper outlines our recent development of a simple, inexpensive infrared device to detect and confirm the delivery of pellets. The in-line construction of the detector routes the falling pellet through a barrel so that it passes between an infrared emitter and receiver. The circuitry was designed to be compatible with all commercially available behavioral measurement systems, and so may be retrofit to any existing system. Our tests with the detector so far have shown that it is 100% accurate in detecting pellet delivery. The individual unit cost is approximately 25 dollars. The low cost and versatility of the device offer an easy method to ensure the integrity of food delivery in operant settings.
doi:10.1901/jeab.2008.90-249
PMCID: PMC2529191  PMID: 18831128
pellet; detection; infrared; reliability
25.  Effects of Differing Response-Force Requirements on Food-Maintained Responding in CD-1 Mice 
The effect of force requirements on response effort was examined using outbred (CD-1) mice trained to press a disk with their snout. Lateral peak forces greater than 2 g were defined as threshold responses (i.e., all measured responses). Different force requirements were used to define criterion responses (a subclass of threshold responses) that exceeded the requirement. The reinforcer was sweetened, condensed milk, and it was delivered upon response termination. All mice were exposed to two ascending series of criterion force requirements (2, 4, 8, 16, and 32 g). Increasing the force requirement decreased criterion response rates, but increased threshold response rates. The time-integral of force (area under the force–time curve for individual responses, which is proportional to energy expenditure for each response) increased with the increase in the force requirement. These results conflict with the hypothesis that higher force requirements have aversive qualities and suggest that increased force requirements are more analogous to intermittent schedules of reinforcement. These data suggest that estimations of effort or energy expenditure should be measured independently of the force requirement. Individual differences in responding were found for the CD-1 outbred stock.
doi:10.1901/jeab.2007.88-381
PMCID: PMC2174377  PMID: 18047228
operant; effort; force; disk press; CD-1 mice

Results 1-25 (25)