PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Nitric oxide activates intradomain disulfide bond formation in the kinase loop of Akt1/PKBα after burn injury 
Severe burn injury is an acute inflammatory state with massive alterations in gene expression and levels of growth factors, cytokines and free radicals. During the catabolic processes, changes in insulin sensitivity and skeletal muscle wasting (unintended loss of 5–15% of lean body mass) are observed clinically. Here, we reveal a novel molecular mechanism of Akt1/protein kinase Bα (Akt1/PKBα) regulated via cross-talking between dephosphorylation of Thr308 and S-nitrosylation of Cys296 post severe burn injury, which were characterized using nano-LC interfaced with tandem quadrupole time-of-fight mass spectrometry (Q-TOF)micro tandem mass spectrometry in both in vitro and in vivo studies. For the in vitro studies, Akt1/PKBα was S-nitrosylated with S-nitrosoglutathione and derivatized by three methods. The derivatives were isolated by SDS-PAGE, trypsinized and analyzed by the tandem MS. For the in vivo studies, Akt1/PKBα in muscle lysates from burned rats was immuno-precipitated, derivatized with HPDP-Biotin and analyzed as above. The studies demonstrated that the NO free radical reacts with the free thiol of Cys296 to produce a Cys296-SNO intermediate which accelerates interaction with Cys310 to form Cys296-Cys310 in the kinase loop. MS/MS sequence analysis indicated that the dipeptide, linked via Cys296-Cys310, underwent dephosphorylation at Thr308. These effects were not observed in lysates from sham animals. As a result of this dual effect of burn injury, the loose conformation that is slightly stabilized by the Lys297-Thr308 salt bridge may be replaced by a more rigid structure which may block substrate access. Together with the findings of our previous report concerning mild IRS-1 integrity changes post burn, it is reasonable to conclude that the impaired Akt1/PKBα has a major impact on FOXO3 subcellular distribution and activities.
doi:10.3892/ijmm.2013.1241
PMCID: PMC3597556  PMID: 23314241
Akt1/protein kinase Bα; S-nitrosylation; disulfide bond; MS/MS
2.  SILAM for quantitative proteomics of liver Akt1/PKBα after burn injury 
Akt1/protein kinase Bα (Akt1/PKBα) is a downstream mediator of the insulin signaling system. In this study we explored mechanism(s) for its role in burn injury. Akt1/PKBα in liver extracts from mice with burn injury fed with (2H7)-L-Leu was immunoprecipitated and isolated with SDS-PAGE. Two tryptic peptides, one in the kinase loop and a control peptide just outside of the loop were sequenced via nano-LC interfaced with quadruple time-of-flight tandem mass spectrometry (Q-TOF tandem MS). Their relative isotopologue abundances were determined by stable isotope labeling by amino acids in mammalians (SILAM). Relative quantifications based on paired heavy/light peptides were obtained in 3 steps. The first step included homogenization of mixtures of equal amounts of tissue from burned and sham-treated animals (i.e., isotope dilution) and acquisition of uncorrected data based on parent monoisotopic MS ion ratios. The second step included determination of isotopic enrichment of the kinase from burned mice on Day 7 and the third step enrichment correction of partially labeled heavy and light monoisotopic MS ion ratios for relative quantification of bioactivity (loop peptide) and expression level (control peptide). Protein synthesis and enrichment after injury were found to be dependent on tissue and turnover of individual proteins. Three heavy and light monoisotopic ion ratios for albumin peptides from burned mice indicated ~55% enrichment and ~16.7-fold downregulation. In contract, serum amyloid P had ~66% enrichment and was significantly upregulated. Akt1/PKBα had ~56% enrichment and kinase level in response to the burn injury was upregulated compared with the control peptide. However, kinase bioactivity, represented by the Cys296 peptide, was significantly reduced. Overall, we demonstrated that i) quantitative proteomics can be performed without completely labeled mice; ii) measurement of enrichment of acyl-tRNAs is unnecessary and iii) Cys296 plays an important role in kinase activity after burn injury.
doi:10.3892/ijmm.2011.861
PMCID: PMC3981641  PMID: 22179310
Akt1/PKBα; SILAM; MS/MS; burn injury
3.  Single photon emission computed tomography perfusion differences in mild cognitive impairment 
Objective
To relate cerebral perfusion abnormalities to subsequent changes in clinical status among patients with mild cognitive impairment (MCI).
Methods
Perfusion single photon emission computed tomography (SPECT) images were acquired in 105 elderly patients without dementia with MCI, using 99mTc‐HMPAO. Clinical outcome after a 5‐year follow‐up period was heterogeneous.
Results
Baseline SPECT data differed in those patients with MCI who were later diagnosed with Alzheimer's disease (the converter group) from those patients with MCI who experienced clinically evident decline but did not progress to a diagnosis of Alzheimer's disease within the follow‐up period (the decliner group), from patients with MCI who had no clinical evidence of progression (the stable group), and from a group of 19 normal subjects (the control group). The most consistent decreases in relative perfusion in converters compared with the normal, stable and decliner groups were observed in the caudal anterior cingulate, and in the posterior cingulate. In addition, converters showed increased relative perfusion in the rostral anterior cingulate in comparison to the stable and decliner groups. A group of patients with Alzheimer's disease were also included for purposes of comparison. The group of patients with Alzheimer's disease at baseline differed from each of the other groups, with temporoparietal regions showing the most significant reductions in perfusion.
Conclusions
These results suggest that clinical heterogeneity in MCI is reflected in SPECT perfusion differences, and that the pattern of perfusion abnormalities evolves with increasing clinical severity.
doi:10.1136/jnnp.2006.096800
PMCID: PMC2117661  PMID: 17056633
4.  Imaging amyloid deposition in Lewy body diseases 
Neurology  2008;71(12):903-910.
Background:
Extrapyramidal motor symptoms precede dementia in Parkinson disease (PDD) by many years, whereas dementia occurs early in dementia with Lewy bodies (DLB). Despite this clinical distinction, the neuropsychological and neuropathologic features of these conditions overlap. In addition to widespread distribution of Lewy bodies, both diseases have variable burdens of neuritic plaques and neurofibrillary tangles characteristic of Alzheimer disease (AD).
Objectives:
To determine whether amyloid deposition, as assessed by PET imaging with the β-amyloid–binding compound Pittsburgh Compound B (PiB), can distinguish DLB from PDD, and to assess whether regional patterns of amyloid deposition correlate with specific motor or cognitive features.
Methods:
Eight DLB, 7 PDD, 11 Parkinson disease (PD), 15 AD, and 37 normal control (NC) subjects underwent PiB-PET imaging and neuropsychological assessment. Amyloid burden was quantified using the PiB distribution volume ratio.
Results:
Cortical amyloid burden was higher in the DLB group than in the PDD group, comparable to the AD group. Amyloid deposition in the PDD group was low, comparable to the PD and NC groups. Relative to global cortical retention, occipital PiB retention was lower in the AD group than in the other groups. For the DLB, PDD, and PD groups, amyloid deposition in the parietal (lateral and precuneus)/posterior cingulate region was related to visuospatial impairment. Striatal PiB retention in the DLB and PDD groups was associated with less impaired motor function.
Conclusions:
Global cortical amyloid burden is high in dementia with Lewy bodies (DLB) but low in Parkinson disease dementia. These data suggest that β-amyloid may contribute selectively to the cognitive impairment of DLB and may contribute to the timing of dementia relative to the motor signs of parkinsonism.
GLOSSARY
= Automated Anatomic Labeling;
= Alzheimer disease;
= Alzheimer’s Disease Research Center;
= American version of the National Adult Reading Test;
= analysis of covariance;
= Blessed Dementia Scale;
= cerebral amyloid angiopathy;
= Clinical Dementia Rating;
= Clinical Dementia Rating Sum of Boxes;
= dementia with Lewy bodies;
= distribution volume ratio;
= Cued Selective Reminding Test;
= Free Selective Reminding Test;
= Hoehn and Yahr;
= Massachusetts General Hospital;
= Mini-Mental State Examination;
= normal control;
= neurofibrillary tangle;
= Neuropsychiatric Inventory Questionnaire;
= not significant;
= Parkinson disease;
= Parkinson disease dementia;
= Pittsburgh Compound B;
= region of interest;
= Statistical Parametric Mapping;
= UK Parkinson’s Disease Society Brain Bank Research Center;
= United Parkinson’s Disease Rating Scale;
= Wechsler Adult Intelligence Scale–Revised.
doi:10.1212/01.wnl.0000326146.60732.d6
PMCID: PMC2637553  PMID: 18794492
5.  Imaging amyloid deposition in Lewy body diseases 
Neurology  2008;71(12):903-910.
Background
Extrapyramidal motor symptoms precede dementia in Parkinson disease (PDD) by many years, whereas dementia occurs early in dementia with Lewy bodies (DLB). Despite this clinical distinction, the neuropsychological and neuropathologic features of these conditions overlap. In addition to widespread distribution of Lewy bodies, both diseases have variable burdens of neuritic plaques and neurofibrillary tangles characteristic of Alzheimer disease (AD).
Objectives
To determine whether amyloid deposition, as assessed by PET imaging with the β-amyloid–binding compound Pittsburgh Compound B (PiB), can distinguish DLB from PDD, and to assess whether regional patterns of amyloid deposition correlate with specific motor or cognitive features.
Methods
Eight DLB, 7 PDD, 11 Parkinson disease (PD), 15 AD, and 37 normal control (NC) subjects underwent PiB-PET imaging and neuropsychological assessment. Amyloid burden was quantified using the PiB distribution volume ratio.
Results
Cortical amyloid burden was higher in the DLB group than in the PDD group, comparable to the AD group. Amyloid deposition in the PDD group was low, comparable to the PD and NC groups. Relative to global cortical retention, occipital PiB retention was lower in the AD group than in the other groups. For the DLB, PDD, and PD groups, amyloid deposition in the parietal (lateral and precuneus)/posterior cingulate region was related to visuospatial impairment. Striatal PiB retention in the DLB and PDD groups was associated with less impaired motor function.
Conclusions
Global cortical amyloid burden is high in dementia with Lewy bodies (DLB) but low in Parkinson disease dementia. These data suggest that β-amyloid may contribute selectively to the cognitive impairment of DLB and may contribute to the timing of dementia relative to the motor signs of parkinsonism.
doi:10.1212/01.wnl.0000326146.60732.d6
PMCID: PMC2637553  PMID: 18794492
6.  Evaluation of phenylpiperazines as targeting agents for neuroblastoma. 
British Journal of Cancer  1996;74(6):917-924.
The potential of radiolabelled phenylpiperazines as agents for the detection and therapy of tumours of neural crest origin was evaluated by in vitro pharmacological studies with human neuroblastoma cell lines [SK-N-SH and SK-N-BE(2C)], and in vivo by biodistribution measurements. The ability of phenylpiperazines: 4-phenyl-piperazine (PP), 1-carboxamidino-4-phenyl-piperazine (CAPP), [4-(3-chlorophenyl)-piperazine (mCPP), 4-(3-trifluoro methyl phenyl)-piperazine (TFMPP), and (1,1-dimethyl-4-phenyl)-piperazinium hydrochloride (DMPP) and chlorophenyl hydroxypiperidine [CP(OH)P], to inhibit MIBG uptake by neuroblastoma cells was determined by incubation with [125I]MIBG (0.1 microM) for 2 h in the presence of varying concentrations (10(-8)-10(-3) M) of ligand. For measuring uptake, cells were incubated with [125I]IPP (0.1 microM) and cell-associated radioactivity was measured at various times. Retention was studied by incubating cells in the presence of [125I]IPP (0.1 microM) for 2 h, followed by replacement with drug-free medium and determination of cell-bound radioactivity. Selectivity of [125I]IPP uptake was studied by inhibition studies with MIBG, DMI, 5HT and phenylpiperazines. The biodistribution of [125I]IPP was measured in normal rats at 0.083, 0.5, 1, 2 and 24 h (six animals per group). The IC50S (microM) for inhibition of [125I]MIBG uptake were: PP, 1.5; CPP, 2.5; CAPP, 2.5; DMPP, 5; CP(OH)P, 30 and TFMPP, 65. The rate of cellular uptake of [125I]IPP was greatest between 0 and 60 min and decreased after 60 min, similar to MIBG. After an initial rapid washout of approximately 50% of the radioactivity, retention remained constant for 3 h. The IC50S (microM) for inhibition of [125I]IPP uptake were: MIBG, 18-25; DMI, 0.6-1.5; 5HT, > 100; IPP, 1.8-2.5; CPP, 7.0-9.0 and TFMPP, > or = 20. The in vivo studies demonstrated a pattern of distribution similar to MIBG. The results demonstrate that phenylpiperazines display significant affinity for neuroblastoma with uptake and retention characteristics similar to MIBG.
PMCID: PMC2074721  PMID: 8826858
7.  Pharmacokinetics of [18F]fleroxacin in patients with acute exacerbations of chronic bronchitis and complicated urinary tract infection studied by positron emission tomography. 
The pharmacokinetics of fleroxacin, a new broad-spectrum fluoroquinolone, were measured by positron emission tomography (PET) with [18F]fleroxacin in five patients with acute bacterial exacerbations of chronic bronchitis and in five patients with symptomatic, complicated urinary tract infection. Two studies were performed with each patient, one within 24 h of the initiation and one within 24 h of the completion of a 7-day course of fleroxacin, 400 mg/day. For each study, the patient received an infusion of that day's therapeutic dose of fleroxacin (400 mg) supplemented with approximately 740 MBq of [18F]fleroxacin, and serial PET images and blood samples were collected for 6 to 8 h starting at the initiation of the infusion. Between studies, the drug was administered orally. In all infected tissues, there was rapid accumulation of radiolabeled drug, with stable levels achieved within 1 h after completion of the infusion. In kidneys, accumulation was greater in the presence of active infection (P < 0.01), while in lungs, accumulation was lower (P < 0.02). Infection of the lung or urinary tract had no effect on drug delivery to uninvolved tissues. Also, there was no difference between the results obtained at the beginning and the end of therapy. Overall, peak concentrations of drug many times the MIC at which 90% of the infecting organisms are inhibited (MIC90) were achieved in the kidneys (> 30 micrograms/g), prostate glands (> 11 micrograms/g), and lungs (> 14 micrograms/g). Plateau concentrations (2 to 8 h; given as mean micrograms per gram +/- standard error of the mean) of drug in kidneys (15.11 +/- 0.55), prostate glands (5.08 +/- 0.19), and lungs (5.75 +/- 0.22) were also well above the MIC90 for most relevant pathogens. All patients had a good therapeutic response to fleroxacin.
PMCID: PMC163176  PMID: 8851589
8.  Pharmacokinetics of [18F]fleroxacin in healthy human subjects studied by using positron emission tomography. 
Antimicrobial Agents and Chemotherapy  1993;37(10):2144-2152.
Positron emission tomography (PET) with [18F]fleroxacin was used to study the pharmacokinetics of fleroxacin, a new broad-spectrum fluoroquinolone, in 12 healthy volunteers (9 men and 3 women). The subjects were infused with a standard therapeutic dose of fleroxacin (400 mg) supplemented with approximately 20 mCi of [18F]fleroxacin. Serial PET images were made and blood samples were collected for 8 h, starting at the initiation of the infusion. The subjects were then treated with unlabeled drug for 3 days (400 mg/day). On the fifth day, infusion of radiolabeled drug, PET imaging, and blood collection were repeated. In most organs, there was rapid accumulation of radiolabeled drug, with stable levels achieved within 1 h after completion of the infusion. Especially high peak concentrations (in micrograms per gram) were achieved in the kidney (> 34), liver (> 25), lung (> 20), myocardium (> 19), and spleen (> 18). Peak concentrations of drug more than two times the MIC for 90% of Enterobacteriaceae strains tested (> 10-fold for most organisms) were achieved in all tissues except the brain and remained above this level for more than 6 to 8 h. The plateau concentrations in tissues (2 to 8 h, in micrograms per gram +/- standard error of the mean) of drug were as follows: brain, 0.83 +/- 0.032; myocardium, 4.53 +/- 0.24; lung, 5.80 +/- 0.48; liver, 7.31 +/- 0.33; spleen, 6.00 +/- 0.47; bowel, 3.53 +/- 0.74; kidney, 8.85 +/- 0.64; bone, 2.87 +/- 0.29; muscle, 4.60 +/- 0.33; prostate, 4.65 +/- 0.48; uterus, 3.87 +/- 0.39; breast, 2.68 +/- 0.11; and blood, 2.35 +/- 0.09. Concentrations of fleroxacin in tissue were similar in males and females, before and after pretreatment with unlabeled drug.
Images
PMCID: PMC192242  PMID: 8257137
9.  Pharmacokinetics of 18F-labeled fluconazole in healthy human subjects by positron emission tomography. 
The distribution of fluconazole in tissue of human volunteers was determined by positron emission tomographic scanning over a 2-h period following the infusion of a tracer dose of 18F-fluconazole (5 to 7 mCi) plus 400 mg of unlabeled drug (the standard daily dose of fluconazole). Previous studies have validated this approach for animals. From serial positron emission tomographic imaging and blood sampling, pharmacokinetics of fluconazole in tissue were determined. There was significant distribution of the radiolabeled drug in all organs studied, with nearly constant levels achieved by 1 h. Plateau concentrations of fluconazole in key organs (micrograms per gram) included the following: whole brain, 4.92 +/- 0.17; heart, 6.98 +/- 0.20; lung, 7.81 +/- 0.46; liver, 12.94 +/- 0.24; spleen, 22.96 +/- 2.5; kidney, 11.23 +/- 0.61; prostate, 8.24 +/- 0.58; and blood, 3.76 +/- 0.30. Since levels of fluconazole of > 6 micrograms/g are needed to treat infection with most strains of Candida and levels of > 10 micrograms/g are needed for Cryptococcus neoformans, Coccidioides immitis, and Histoplasma capsulatum, the following predictions can be made. The current standard dose of 400 mg/day should be more than adequate in the treatment of urinary tract and hepatosplenic candidiasis but problematic in the treatment of candidal osteomyelitis, even with the higher levels that develop after multiple doses. Similarly, higher doses should be considered, particularly in immunocompromised patients, with infection with C. neoformans, H. capsulatum, and C. immitis that involves the central nervous and musculoskeletal systems.
Images
PMCID: PMC187952  PMID: 8328777
10.  Pharmacokinetics of 18F-labeled fleroxacin in rabbits with Escherichia coli infections, studied with positron emission tomography. 
Antimicrobial Agents and Chemotherapy  1992;36(10):2286-2292.
18F-labeled fleroxacin was used to measure the pharmacokinetics of fleroxacin in healthy and infected animals by positron emission tomography (PET) and tissue radioactivity measurements. In all experiments, a pharmacological dose of unlabeled drug (10 mg/kg) was coinjected with the tracer. The pharmacokinetics of [18F]fleroxacin was measured in groups of healthy mice (n = six per group) at 10, 30, 60, and 120 min after injection and in groups of rats with Escherichia coli thigh infections (n = six per group) at 60 and 120 min after injection by radioactivity measurements in excised tissues. In healthy rabbits (n = 4) and in rabbits with E. coli thigh infections (n = 4), tissue concentrations of drug were determined by serial PET imaging over 2 h; after the final image was acquired, animals were sacrificed and concentrations measured by PET were compared with the results of tissue radioactivity measurements. In all three species, there was rapid equilibration of [18F]fleroxacin to significant concentrations in most peripheral organs; low concentrations of drug were detected in the brain. Accumulations of radiolabeled drug in infected and healthy thigh muscles were similar. Peak concentrations of drug of more than three times the MIC for 90% of members of the family Enterobacteriaceae (greater than 100-fold for most organisms) were achieved in all tissues except brain and remained above this level for more than 2 h. Especially high peak concentrations were achieved in the kidney (greater than 75 micrograms/g), liver (greater than 50 micrograms/g), blood (greater than 25 micrograms/g), and bone and lung (greater than 10 micrograms/g).Since the MICs for 90% of all Enterobacteriaceae are <2 micrograms/ml, fleroxacin should be particularly useful in treating gram-negative infections affecting these tissues. In contrast, the low concentration of drug delivered to the brain should limit the toxicity of the drug for the central nervous system.
Images
PMCID: PMC245491  PMID: 1444310

Results 1-10 (10)