Search tips
Search criteria

Results 1-25 (49)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis 
Nature Communications  2015;6:8137.
To support growth, tumour cells reprogramme their metabolism to simultaneously upregulate macromolecular biosynthesis while maintaining energy production. Uncoupling proteins (UCPs) oppose this phenotype by inducing futile mitochondrial respiration that is uncoupled from ATP synthesis, resulting in nutrient wasting. Here using a UCP3 transgene targeted to the basal epidermis, we show that forced mitochondrial uncoupling inhibits skin carcinogenesis by blocking Akt activation. Similarly, Akt activation is markedly inhibited in UCP3 overexpressing primary human keratinocytes. Mechanistic studies reveal that uncoupling increases fatty acid oxidation and membrane phospholipid catabolism, and impairs recruitment of Akt to the plasma membrane. Overexpression of Akt overcomes metabolic regulation by UCP3, rescuing carcinogenesis. These findings demonstrate that mitochondrial uncoupling is an effective strategy to limit proliferation and tumorigenesis through inhibition of Akt, and illuminate a novel mechanism of crosstalk between mitochondrial metabolism and growth signalling.
Aerobic glycolysis and diminished oxidative phosphorylation exhibited by tumour cells enables the production of energy necessary to support malignant proliferation. Here the authors show that UCP3 promotes mitochondrial uncoupling and prevents tumorigenesis through a mitochondrially-driven pathway of AKT inhibition.
PMCID: PMC4552083  PMID: 26310111
2.  Anticancer Activity of Fish Oils against Human Lung Cancer Is Associated with Changes in Formation of PGE2 and PGE3 and Alteration of Akt Phosphorylation 
Molecular carcinogenesis  2013;53(7):566-577.
The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes. Here we investigated the effect of eicosapentaenoic acid (EPA) on the proliferation of human non-small cell lung cancer A549 (COX-2 over-expressing) and H1299 (COX-2 null) as well as their xenograft models. While EPA inhibited 50% of proliferation of A549 cells at 6.05 μM, almost 80 μM of EPA was needed to reach similar levels of inhibition of H1299 cells. The formation of PGE3 in A549 cells was almost 3-fold higher than that of H1299 cells when these cells were treated with EPA (25 μM). Intriguingly, when COX-2 expression was reduced by siRNA or shRNA in A549 cells, the antiproliferative activity of EPA was reduced substantially compared to that of control siRNA or shRNA transfected A549 cells. In line with this, dietary menhaden oil significantly inhibited the growth of A549 tumors by reducing tumor weight by 58.8 ± 7.4 %. In contrast, similar diet did not suppress the development of H1299 xenograft. Interestingly, the ratio of PGE3 to PGE2 in A549 was about 0.16 versus only 0.06 in H1299 xenograft tissues. Furthermore, PGE2 up-regulated expression of pAkt, whereas PGE3 downregulated expression of pAkt in A549 cells. Taken together, the results of our study suggest that the ability of EPA to generate PGE3 through COX-2 enzyme might be critical for EPA-mediated tumor growth inhibition which is at least partly due to down-regulation of Akt phosphorylation by PGE3.
PMCID: PMC4395033  PMID: 23371504
Antiproliferative activity; NSCLC cells; fish oil EPA; COX-2; Prostaglandins
3.  Prostaglandin E3 metabolism and cancer 
Cancer letters  2014;348(0):1-11.
The anticancer activity of n-3 fatty acids, especially those derived from fish, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid) (DHA), has been studied for centuries. While there is a growing body of evidence that EPA and DHA may influence cancer initiation and development through targeting multiple events of tumor development, the underlying mechanisms responsible for these activities are still not fully understood. A number of studies have suggested that the anticancer activities of EPA and DHA are associated with their effects on eicosanoid metabolism by which they inhibit prostaglandin E2 (PGE2) production. In contrast to DHA, EPA can function as a substrate for cyclooxygenases (COXs) to synthesize unique 3-series prostaglandin compounds, especially PGE3. With advance technology in mass spectrometry, there is renewed interest in studying the role of PGE3 in EPA elicited anti-proliferative activity in various cancers, with some promising results. Here, we summarize the regulation of PGE3 synthesis in cancer cells and its role in EPA elicited anticancer activity. The development of PGE3 and its metabolites as potential biomarkers for future clinical evaluation of EPA and fish oil in cancer care is discussed.
PMCID: PMC4366418  PMID: 24657656
n-3 Fatty acids; PGE3; Metabolism; Cancer cells; Tumor tissues
4.  Cell-type-specific roles for COX-2 in UVB-induced skin cancer 
Carcinogenesis  2014;35(6):1310-1319.
In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2 flox/flox mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2 flox/flox;K14Cre + mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2 flox/flox;K14Cre + papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2 flox/flox; LysMCre + myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer.
PMCID: PMC4043244  PMID: 24469308
5.  UVB Radiation-Induced β-catenin Signaling is Enhanced by COX-2 Expression in Keratinocytes 
Molecular carcinogenesis  2011;51(9):734-745.
UVB radiation is the major carcinogen responsible for skin carcinogenesis, thus elucidation of the molecular pathways altered in skin in response to UVB would reveal novel targets for therapeutic intervention. It is well established that UVB leads to upregulation of cyclooxygenase 2 (COX-2) in the skin which contributes to skin carcinogenesis. Overexpression of COX-2 has been shown to promote colon cancer cell growth through β-catenin signaling, however, little is known about the connection between UVB, COX-2 and β-catenin in the skin. In the present study, we have identified a novel pathway in which UVB induces β-catenin signaling in keratinocytes, which is modulated by COX-2 expression. Exposure of the mouse 308 keratinocyte cell line (308 cells) and primary normal human epidermal keratinocytes (NHEKs) to UVB resulted in increased protein levels of both N-terminally unphosphorylated and total β-catenin. In addition, we found that UVB enhanced β-catenin-dependent TOPflash reporter activity and expression of a downstream β-catenin target gene. We demonstrated that UVB-induced β-catenin signaling is modulated by COX-2, as treatment of keratinocytes with the specific COX-2 inhibitor NS398 blocked UVB induction of β-catenin. Additionally, β-catenin target gene expression was reduced in UVB-treated COX-2 knockout (KO) MEFs compared to wild-type (WT) MEFs. Furthermore, epidermis from UVB-exposed SKH-1 mice exhibited increased N-terminally unphosphorylated and total β-catenin protein levels and increased staining for total β-catenin, and both responses were reduced in COX-2 heterozygous mice. Taken together, these results suggest a novel pathway in which UVB induces β-catenin signaling in keratinocytes which is enhanced by COX-2 expression.
PMCID: PMC4440547  PMID: 21853475
UVB; β-catenin; COX-2; PGE2
6.  Combined targeting of Stat3/NFκB/Cox-2/EP4 for effective management of pancreatic cancer 
Near equal rates of incidence and mortality emphasize the need for novel targeted approaches for better management of pancreatic cancer patients. Inflammatory molecules NFκB and Stat3 are overexpressed in pancreatic tumors. Inhibition of one protein allows cancer cells to survive using the other. The goal of the present study is to determine whether targeting Stat3/NFκB cross talk with a natural product Nexrutine (Nx) can inhibit inflammatory signaling in pancreatic cancer.
Experimental design
HPNE, HPNE-Ras, BxPC3, Capan-2, MIA PaCa-2 and AsPC-1 cells were tested for growth, apoptosis, Cox-2, NFκB and Stat3 level in response to Nx treatment. Transient expression, gel shift, ChIP was used to examine transcriptional regulation of Cox-2. Stat3 knockdown was used to decipher Stat3/NFκB cross talk. Histopathological and immunoblotting evaluation was performed on BK5-Cox2 transgenic mice treated with Nx. In vivo expression of prostaglandin receptor EP4 was analyzed in a retrospective cohort of pancreatic tumors using a TMA.
Nx treatment inhibited growth of pancreatic cancer cells through induction of apoptosis. Reduced levels and activity of Stat3, NFκB and their cross talk led to transcriptional suppression of Cox-2 and subsequent decreased levels of PGE2 and PGF2. Stat3 knockdown studies suggest Stat3 as negative regulator of NFκB activation. Nx intervention reduced the levels of NFκB, Stat3 and fibrosis in vivo. Expression of prostaglandin receptor EP4 that is known to play a role in fibrosis was significantly elevated in human pancreatic tumors.
Dual inhibition of Stat3-NFκB by Nx may overcome problems associated with inhibition of either pathway.
PMCID: PMC3969421  PMID: 24520096
Pancreatic cancer; Nexrutine; Stat3; NFκB; Prostaglandin receptor EP4; Cox-2
7.  Dietary Energy Balance Modulation of Kras– and Ink4a/Arf+/-–Driven Pancreatic Cancer: The Role of Insulin-like Growth Factor-1 
Cancer prevention research (Philadelphia, Pa.)  2013;6(10):10.1158/1940-6207.CAPR-13-0185.
New molecular targets and intervention strategies for breaking the obesity-pancreatic cancer link are urgently needed. Using relevant spontaneous and orthotopically transplanted murine models of pancreatic cancer, we tested the hypothesis that dietary energy balance modulation impacts pancreatic cancer development and progression through an insulin-like growth factor (IGF)-1–dependent mechanism. In LSL-KrasG12D/Pdx-1-Cre/Ink4a/Arflox/+ mice, calorie restriction, versus overweight- or obesity-inducing diet regimens, decreased serum IGF-1, tumoral Akt/mammalian target of rapamycin (mTOR) signaling, pancreatic desmoplasia, and progression to pancreatic ductal adenocarcinoma (PDAC); and increased pancreatic tumor-free survival. Serum IGF-1, Akt/mTOR signaling, and orthotopically transplanted PDAC growth were decreased in liver-specific IGF-1–deficient mice (versus wild-type mice), and rescued with IGF-1 infusion. Thus, dietary energy balance modulation impacts spontaneous pancreatic tumorigenesis induced by mutant Kras and Ink4a deficiency, the most common genetic alterations in human pancreatic cancer. Furthermore, IGF‐1 and components of its downstream signaling pathway are promising mechanistic targets for breaking the obesity-pancreatic cancer link.
PMCID: PMC3874288  PMID: 23980075
Pancreatic cancer; obesity; calorie restriction; Kras; Ink4a/Arf; Insulin-like growth factor-1
8.  The Chemopreventive Efficacies of Nonsteroidal Anti-inflammatory Drugs: the Relationship of Short-term Biomarkers to Long-term Skin Tumor Outcome 
The UVB component of sunlight, which causes DNA damage and inflammation, is the major cause of nonmelanoma skin cancer (NMSC), the most prevalent of all cancers. Nonsteroidal anti-inflammatory drugs (NSAIDs) and coxibs have been shown to be effective chemoprevention agents in multiple preclinical trials, including NMSC, colon and urinary bladder cancer. NSAIDs, however, cause gastrointestinal irritation, which led to the recent development of nitric oxide (NO) derivatives that may partially ameliorate this toxicity. This study compared the efficacy of several NSAIDs and NO-NSAIDs on UV-induced NMSC in SKH-1 hairless mice and determined whether various short-term biomarkers were predictive of long-term tumor outcome with these agents. Naproxen at 100 (p>.05) and 400 ppm (p<.01) in the diet reduced tumor multiplicity by 26 and 63% respectively. The NO-naproxen at slightly lower molar doses shows similar activities. Aspirin at 60 or 750 ppm in the diet reduced tumor multiplicity by 19 and 50%; while the equivalent doses (108 and 1350 ppm) were slightly less effective. Sulindac at 25 and 150 ppm in the diet doses far below the Human Equivalent Dose, was the most potent NSAID with reductions of 50 and 94% respectively. In testing short-term biomarkers we found that agents that reduce UV-induced prostaglandin E2 synthesis and/or inhibit UV-induced keratinocyte proliferation yielded long-term tumor efficacy.
PMCID: PMC3701752  PMID: 23682071
Nonsteroidal anti-inflammatory drugs; prostaglandin; skin; UV; NO-NSAID
9.  Calorie Restriction Decreases Murine and Human Pancreatic Tumor Cell Growth, Nuclear Factor-κB Activation, and Inflammation-Related Gene Expression in an Insulin-like Growth Factor-1−Dependent Manner 
PLoS ONE  2014;9(5):e94151.
Calorie restriction (CR) prevents obesity and has potent anticancer effects that may be mediated through its ability to reduce serum growth and inflammatory factors, particularly insulin-like growth factor (IGF)-1 and protumorigenic cytokines. IGF-1 is a nutrient-responsive growth factor that activates the inflammatory regulator nuclear factor (NF)-κB, which is linked to many types of cancers, including pancreatic cancer. We hypothesized that CR would inhibit pancreatic tumor growth through modulation of IGF-1-stimulated NF-κB activation and protumorigenic gene expression. To test this, 30 male C57BL/6 mice were randomized to either a control diet consumed ad libitum or a 30% CR diet administered in daily aliquots for 21 weeks, then were subcutaneously injected with syngeneic mouse pancreatic cancer cells (Panc02) and tumor growth was monitored for 5 weeks. Relative to controls, CR mice weighed less and had decreased serum IGF-1 levels and smaller tumors. Also, CR tumors demonstrated a 70% decrease in the expression of genes encoding the pro-inflammatory factors S100a9 and F4/80, and a 56% decrease in the macrophage chemoattractant, Ccl2. Similar CR effects on tumor growth and NF-κB-related gene expression were observed in a separate study of transplanted MiaPaCa-2 human pancreatic tumor cell growth in nude mice. In vitro analyses in Panc02 cells showed that IGF-1 treatment promoted NF-κB nuclear localization, increased DNA-binding of p65 and transcriptional activation, and increased expression of NF-κB downstream genes. Finally, the IGF-1-induced increase in expression of genes downstream of NF-κB (Ccdn1, Vegf, Birc5, and Ptgs2) was decreased significantly in the context of silenced p65. These findings suggest that the inhibitory effects of CR on Panc02 pancreatic tumor growth are associated with reduced IGF-1-dependent NF-κB activation.
PMCID: PMC4013119  PMID: 24804677
10.  SKHIN/Sprd, a new genetically defined inbred hairless mouse strain for UV-induced skin carcinogenesis studies 
Experimental dermatology  2012;21(3):10.1111/j.1600-0625.2011.01430.x.
Strains of mice vary in their susceptibility to ultra-violet (UV) radiation-induced skin tumors. Some strains of hairless mice (homozygous for the spontaneous Hrhr mutation) are particularly susceptible to these tumors. The skin tumors that develop in hairless mice resemble, both at the morphologic and molecular levels, UV-induced squamous cell carcinomas (SCC) and their precursors in human. The most commonly employed hairless mice belong to the SKH1 stock. However, these mice are outbred and their genetic background is not characterized, which makes them a poor model for genetic studies. We have developed a new inbred strain from outbred SKH1 mice that we named SKHIN/Sprd (now at generation F31). In order to characterize the genetic background of this new strain, we genotyped a cohort of mice at F30 with 92 microsatellites and 140 single nucleotide polymorphisms (SNP) evenly distributed throughout the mouse genome. We also exposed SKHIN/Sprd mice to chronic UV irradiation and showed that they are as susceptible to UV-induced skin carcinogenesis as outbred SKH1 mice. In addition, we proved that, albeit with low efficiency, inbred SKHIN/Sprd mice are suitable for transgenic production by classical pronuclear microinjection. This new inbred strain will be useful for the development of transgenic and congenic strains on a hairless inbred background as well as the establishment of syngeneic tumor cell lines. These new tools can potentially help elucidate a number of features of the cutaneous response to UV irradiation in humans, including the effect of genetic background and modifier genes.
PMCID: PMC3881295  PMID: 22379968
ultraviolet radiation; skin carcinogenesis; mouse model; hairless mice
11.  Acute L-CPT1 Overexpression Recapitulates Reduced Palmitate Oxidation of Cardiac Hypertrophy 
Circulation research  2012;112(1):57-65.
Muscle carnitine palmitoyltransferase I (M-CPT1) is predominant in heart, but the liver isoform (L-CPT1) is elevated in hearts with low long chain fatty acid (LCFA) oxidation, such as fetal and hypertrophied hearts.
This work examined the effect of acute L-CPT1 expression has on the regulation of palmitate oxidation and energy metabolism in intact functioning rat hearts for comparison to findings in hypertrophied hearts.
Methods and Results
L-CPT1 was expressed in vivo in rat hearts by coronary perfusion of Adv.cmv.L-CPT1 (L-CPT1, n=15) versus PBS infusion (PBS, n=7) or empty virus (EMPTY, n=5). L-CPT1 was elevated 5-fold at 72 hours after Adv.cmv.L-CPT1 infusion (P<0.05), but M-CPT1 was unaffected. Despite similar tricarboxylic acid cycle rates, palmitate oxidation rates were reduced with L-CPT1 (1.12±0.29 micromole/min/g dw, mean ± SE) vs PBS (1.6±0.34). Acetyl CoA production from palmitate was reduced with L-CPT1 (69%±0.02, P<0.05; PBS= 79%±0.01, Empty=81%±0.02), similar to what occurs in hypertrophied hearts and with no difference in malonyl CoA content. Glucose oxidation was elevated with L-CPT1 (by 60%). Surprisingly, L-CPT1 hearts contained elevated atrial natriuretic peptide, indicating induction of hypertrophic signaling.
The results link L-CPT1 expression to reduced palmitate oxidation in a non-diseased, adult heart, recapitulating the phenotype of reduced LCFA oxidation in cardiac hypertrophy. The implications are that L-CPT1 expression induces metabolic remodeling hypertrophic signaling, and that regulatory factors beyond malonyl-CoA in the heart regulate LCFA oxidation via L-CPT1.
PMCID: PMC3537878  PMID: 22982985
Palmitoyltransferase I; long chain fatty acids; beta-oxidation; mitochondria; hypertrophy
12.  Targeted disruption of glutathione peroxidase 4 (GPx4) in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2 
Selenoproteins are essential molecules for the mammalian antioxidant network. We previously demonstrated that targeted loss of all selenoproteins in mouse epidermis disrupted skin and hair development and caused premature death. In the current study we targeted specific selenoproteins for epidermal deletion to determine whether similar phenotypes developed. Keratinocyte-specific knockout mice lacking either the glutathione peroxidase 4 (GPx4) or thioredoxin reductase 1 (TR1) gene were generated by cre-lox technology using K14-cre. TR1 knockout mice had a normal phenotype in resting skin while GPx4 loss in epidermis caused epidermal hyperplasia, dermal inflammatory infiltrate, dysmorphic hair follicles and alopecia in perinatal mice. Unlike epidermal ablation of all selenoproteins, mice ablated for GPx4 recovered after 5 weeks and had a normal lifespan. GPx1 and TR1 were upregulated in the skin and keratinocytes of GPx4 knockout mice. GPx4 deletion reduces keratinocyte adhesion in culture and increases lipid peroxidation and COX-2 levels in cultured keratinocytes and whole skin. Feeding a COX-2 inhibitor to nursing mothers partially prevents development of the abnormal skin phenotype in knockout pups. These data link the activity of cutaneous GPx4 to the regulation of COX-2 and hair follicle morphogenesis and provide insight into the function of individual selenoprotein activity in maintaining cutaneous homeostasis.
PMCID: PMC3652900  PMID: 23364477
13.  Transgenic Insulin-like Growth Factor-1 stimulates activation of COX-2 signaling in mammary glands 
Molecular carcinogenesis  2011;51(12):973-983.
Studies show that elevated IGF-1 levels are associated with an increased risk of breast cancer; however, mechanisms through which IGF-1 promotes mammary tumorigenesis in vivo have not been fully elucidated. To assess the possible involvement of COX-2 signaling in the protumorigenic effects of IGF-1 in mammary glands, we used the unique BK5.IGF-1 mouse model in which transgenic (Tg) mice have significantly increased incidence of spontaneous and DMBA–induced mammary cancer compared to wild type (WT) littermates. Studies revealed that COX-2 expression was significantly increased in Tg mammary glands and tumors, compared to age-matched WTs. Consistent with this, PGE2 levels were also increased in Tg mammary glands. Analysis of expression of the EP receptors that mediate the effects of PGE2 showed that among the four G-protein-coupled receptors, EP3 expression was elevated in Tg glands. Up-regulation of the COX-2/PGE2/EP3 pathway was accompanied by increased expression of VEGF and a striking enhancement of angiogenesis in IGF-1 Tg mammary glands. Treatment with celecoxib, a selective COX-2 inhibitor, caused a 45% reduction in mammary PGE2 levels, attenuated the influx of mast cells and reduced vascularization in Tg glands. These findings indicate that the COX-2/PGE2/EP3 signaling pathway is involved in IGF-1–stimulated mammary tumorigenesis and that COX-2–selective inhibitors may be useful in the prevention or treatment of breast cancer associated with elevated IGF-1 levels in humans.
PMCID: PMC3790642  PMID: 22006370
mammary cancer; IGF-1; COX-2; stroma; transgenic mouse
14.  The EP1 receptor for prostaglandin E2 promotes the development and progression of malignant murine skin tumors 
Molecular Carcinogenesis  2011;51(7):553-564.
High levels of prostaglandin E2 (PGE2) synthesis resulting from the upregulation of COX-2 has been shown to be critical for the development of non-melanoma skin tumors. This effect of PGE2 is likely mediated by one or more of its 4 G-protein coupled membrane receptors, EP1–4. A previous study showed that BK5.EP1 transgenic mice produced more carcinomas than wild type (WT) mice using initiation/promotion protocols, although the tumor response was dependent on the type of tumor promoter used. In this study, a single topical application of either 7,12-dimethylbenz[a]anthracene (DMBA) or benzo[a]pyrene (B[a]P), alone, was found to elicit squamous cell carcinomas (SCC) in the BK5.EP1 transgenic mice, but not in WT mice. While the epidermis of both WT and transgenic mice was hyperplastic several days after DMBA, this effect regressed in the WT mice while proliferation continued in the transgenic mice. Several parameters associated with carcinogen initiation were measured and were found to be similar between genotypes, including CYP1B1 and aromatase expression, B[a]P adduct formation, Ras activity and keratinocyte stem cell numbers. However, EP1 transgene expression elevated COX-2 levels in the epidermis and SCC could be completely prevented in DMBA-treated BK5.EP1 mice either by feeding the selective COX-2 inhibitor celecoxib in their diet or by crossing them onto a COX-2 null background. These data suggest that the tumor promoting/progressing effects of EP1 require the PGE2 synthesized by COX-2.
PMCID: PMC3270117  PMID: 21739481
Prostaglandin E2; EP1 receptor; skin carcinogensis; COX-2
15.  In vivo functional studies of tumor-specific retrogene NanogP8 in transgenic animals 
Cell Cycle  2013;12(15):2395-2408.
The current study was undertaken to investigate potential oncogenic functions of NanogP8, a tumor-specific retrogene homolog of Nanog (expressed in pluripotent cells), in transgenic animal models. To this end, human primary prostate tumor-derived NanogP8 was targeted to the cytokeratin 14 (K14) cellular compartment, and two lines of K14-NanogP8 mice were derived. The line 1 animals, expressing high levels of NanogP8, experienced perinatal lethality and developmental abnormalities in multiple organs, including the skin, tongue, eye, and thymus in surviving animals. On postnatal day 5 transgenic skin, for example, there was increased c-Myc expression and Ki-67+ cells accompanied by profound abnormalities in skin development such as thickened interfollicular epidermis and dermis and lack of hypodermis and sebaceous glands. The line 3 mice, expressing low levels of NanogP8, were grossly normal except cataract development by 4–6 mo of age. Surprisingly, both lines of mice do not develop spontaneous tumors related to transgene expression. Even more unexpectedly, high levels of NanogP8 expression in L1 mice actually inhibited tumor development in a two-stage chemical carcinogenesis model. Mechanistic studies revealed that constitutive NanogP8 overexpression in adult L1 mice reduced CD34+α6+ and Lrig-1+ bulge stem cells, impaired keratinocyte migration, and repressed the expression of many stem cell-associated genes, including Bmp5, Fgfr2, Jmjd1a, and Jun. Our study, for the first time, indicates that transgenically expressed human NanogP8 is biologically functional, but suggests that high levels of NanogP8 may disrupt normal developmental programs and inhibit tumor development by depleting stem cells.
PMCID: PMC3841319  PMID: 23839044
NanogP8; stem cells; K14; epidermis; tumor development
16.  Effects of Gut-Targeted 15-LOX-1 Transgene Expression on Colonic Tumorigenesis in Mice 
Expression of 15-lipoxygenase-1 (15-LOX-1) is decreased in many human cancers; however, the mechanistic significance of its decreased expression has been difficult to determine because its mouse homolog 12/15-LOX has opposing functions. We generated a mouse model in which expression of a human 15-LOX-1 transgene was targeted to the intestinal epithelium via the villin promoter. Targeted expression was confirmed by real-time reverse transcription–polymerase chain reaction and immunoblotting. When the 15-LOX-1 transgene was expressed in colonic epithelial cells of two independent mouse lines (B6 and FVB), azoxymethane-inducible colonic tumorigenesis was suppressed (mean number of tumors: wild type [WT] = 8.2, 15-LOX-1+/− = 4.91, 15-LOX-1+/+ = 3.57; WT vs 15-LOX-1+/− two-sided P = .003, WT vs 15-LOX-1+/+ two-sided P < .001; n = 10–14 mice per group). 15-LOX-1 transgene expression was always decreased in the tumors that did develop. In the presence of expression of the 15-LOX-1 transgene, expression of tumor necrosis factor alpha and its target inducible nitric oxide synthase were decreased and activation of nuclear factor-kappa B in colonic epithelial cells was inhibited.
PMCID: PMC3341308  PMID: 22472308
17.  Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B 
RNA Biology  2013;10(5):865-874.
To fend off foreign genetic elements, prokaryotes have developed several defense systems. The most recently discovered defense system, CRISPR/Cas, is sequence-specific, adaptive and heritable. The two central components of this system are the Cas proteins and the CRISPR RNA. The latter consists of repeat sequences that are interspersed with spacer sequences. The CRISPR locus is transcribed into a precursor RNA that is subsequently processed into short crRNAs. CRISPR/Cas systems have been identified in bacteria and archaea, and data show that many variations of this system exist. We analyzed the requirements for a successful defense reaction in the halophilic archaeon Haloferax volcanii. Haloferax encodes a CRISPR/Cas system of the I-B subtype, about which very little is known. Analysis of the mature crRNAs revealed that they contain a spacer as their central element, which is preceded by an eight-nucleotide-long 5′ handle that originates from the upstream repeat. The repeat sequences have the potential to fold into a minimal stem loop. Sequencing of the crRNA population indicated that not all of the spacers that are encoded by the three CRISPR loci are present in the same abundance. By challenging Haloferax with an invader plasmid, we demonstrated that the interaction of the crRNA with the invader DNA requires a 10-nucleotide-long seed sequence. In addition, we found that not all of the crRNAs from the three CRISPR loci are effective at triggering the degradation of invader plasmids. The interference does not seem to be influenced by the copy number of the invader plasmid.
PMCID: PMC3737343  PMID: 23594992
archaea; Haloferax volcanii; CRISPR/Cas; crRNA; PAM; seed sequence
18.  Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis 
Cancers  2013;5(1):170-183.
Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside.
PMCID: PMC3730312  PMID: 24216703
skin carcinogenesis; skin development; IKKalpha (IKKα)
19.  Second window of preconditioning normalizes palmitate use for oxidation and improves function during low-flow ischaemia 
Cardiovascular Research  2011;92(3):394-400.
Although a major mechanism for cardioprotection is altered metabolism, little is known regarding metabolic changes in ischaemic preconditioning and subsequent ischaemia. Our objective was to examine the effects of the second window of preconditioning (SWOP), the delayed phase of preconditioning against infarction and stunning, on long-chain free fatty acid (LCFA) oxidation during ischaemia in chronically instrumented, conscious pigs.
Methods and results
We studied three groups: (i) normal baseline perfusion (n = 5); (ii) coronary artery stenosis (CAS; n = 5); (iii) CAS 24 h following 2 × 10 min coronary occlusions and 10 min reperfusion (n = 7). Ischaemia was induced by a left anterior descending (LAD) stenosis (40% flow reduction) for 90 min, dropping systolic wall thickening by 72%. LCFA oxidation was assessed following LAD infusion of 13C palmitate, i.e. during control or stenosis, by in vitro nuclear magnetic resonance of the sampled myocardium. Stenosis reduced subendocardial blood flow subendocardially, but not subepicardial, yet induced transmural reductions in LCFA oxidation and increased non-oxidative glycolysis. During stenosis, preconditioned hearts showed normalized contributions of LCFA to oxidative ATP synthesis, despite increased lactate accumulation. SWOP induced a shift towards LCFA oxidation during stenosis, despite increased malonyl-CoA, and marked protection of contractile function with a significant improvement in systolic wall thickening.
Thus, the second window of preconditioning normalized oxidative metabolism of LCFA during subsequent ischaemia despite elevated non-oxidative glycolysis and malonyl-CoA and was linked to protection of regional contractile function resulting in improved mechanical performance. Interestingly, the metabolic responses occurred transmurally while ischaemia was restricted solely to the subendocardium.
PMCID: PMC3211973  PMID: 21835931
Mitochondria; Coronary stenosis; Long-chain fatty acids; β-Oxidation; Ischaemic preconditioning
20.  Protective role of cathepsin L in mouse skin carcinogenesis 
Molecular carcinogenesis  2011;51(4):352-361.
Lysosomal cysteine protease cathepsin L (CTSL) is believed to play a role in tumor progression and is considered a marker for clinically invasive tumors. Studies from our laboratory using the classical mouse skin carcinogenesis model, with 7,12-dimethyl-benz[a]anthracene (DMBA) for initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) for promotion, showed that expression of CTSL is increased in papillomas and squamous cell carcinomas (SCC). We also carried out carcinogenesis studies using Ctsl-deficient nackt (nkt) mutant mice on three different inbred backgrounds. Unexpectedly, the multiplicity of papillomas were significantly higher in Ctsl-deficient than in wild-type mice on two unrelated backgrounds. Topical applications of TPA or DMBA alone to the skin of nkt/nkt mice did not induce papillomas, and there was no increase in spontaneous tumors in nkt/nkt mice on any of the three inbred backgrounds. Reduced epidermal cell proliferation in Ctsl-deficient nkt/nkt mice after TPA treatment suggested that they are not more sensitive than wild-type mice to TPA promotion. We also showed that deficiency of CTSL delays terminal differentiation of keratinocytes, and we propose that decreased elimination of initiated cells is at least partially responsible for the increased papilloma formation in the nackt model.
PMCID: PMC3155742  PMID: 21538579
mouse models; proteases; cysteine cathepsins; skin cancer; two-stage carcinogenesis
21.  Non-steroidal Anti-inflammatory Drugs and Coxibs In Chemoprevention: A Commentary Based Primarily on Animal Studies 
This article endeavors to evaluate the data on the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) and Coxibs in preclinical studies on cancer prevention carried out by the authors. The overall objective was to address questions that we see as significant for the field. The preclinical studies evaluated here are restricted to our rodent studies on colon/intestinal, bladder and non-melanoma skin cancer in which NSAIDs or celecoxib were administered as either prevention agents or therapeutic agents. These studies may shed light on several questions. Should human use of NSAIDs/Coxibs consider not only efficacy but also whether celecoxib is unique compared to other NSAIDs? Are standard NSAIDs as effective as celecoxib in animal studies? Is the efficacy of celecoxib in particular or NSAIDs in general due to their off-target effects or to their effects on COX-1 and COX-2? What is the likely efficacy of low dose aspirin? Some questions raised by human trials and human epidemiology are discussed and related to our observations in animal models. We also considered the problem with cardiovascular (CV) events and whether animal models are predictive of efficacy in humans. Based on human epidemiological studies and its CV profile, it appears that aspirin is the most promising NSAID for the prevention of human colon, bladder and skin cancer, although the animal data for aspirin is less conclusive. We hope that this discussion of the results in animal studies may help inform and shape human trials of these commonly employed, relatively inexpensive and highly effective classes of compounds.
PMCID: PMC3208782  PMID: 21778329
chemoprevention; prostaglandins; COX-2; NSAIDs
22.  The immune system of halophilic archaea 
Mobile Genetic Elements  2012;2(5):228-232.
Prokaryotes have developed several strategies to defend themselves against foreign genetic elements. One of those defense mechanisms is the recently identified CRISPR/Cas system, which is used by approximately half of all bacterial and almost all archaeal organisms. The CRISPR/Cas system differs from the other defense strategies because it is adaptive, hereditary and it recognizes the invader by a sequence specific mechanism. To identify the invading foreign nucleic acid, a crRNA that matches the invader DNA is required, as well as a short sequence motif called protospacer adjacent motif (PAM). We recently identified the PAM sequences for the halophilic archaeon Haloferax volcanii, and found that several motifs were active in triggering the defense reaction. In contrast, selection of protospacers from the invader seems to be based on fewer PAM sequences, as evidenced by comparative sequence data. This suggests that the selection of protospacers has stricter requirements than the defense reaction. Comparison of CRISPR-repeat sequences carried by sequenced haloarchaea revealed that in more than half of the species, the repeat sequence is conserved and that they have the same CRISPR/Cas type.
PMCID: PMC3575430  PMID: 23446883
Haloferax volcanii; CRISPR/Cas; PAM; archaea; prokaryotic immune system; haloarchaea
23.  Expression of slow skeletal TnI in adult mouse hearts confers metabolic protection to ischemia 
Changes in metabolic and myofilament phenotypes coincide in developing hearts. Posttranslational modification of sarcomere proteins influences contractility, affecting the energetic cost of contraction. However, metabolic adaptations to sarcomeric phenotypes are not well understood, particularly during pathophysiological stress. This study explored metabolic adaptations to expression of the fetal, slow skeletal muscle troponin I (ssTnI). Hearts expressing ssTnI exhibited no significant ATP loss during 5 minutes of global ischemia, while non-transgenic littermates (NTG) showed continual ATP loss. At 7 min ischemia TG-ssTnI hearts retained 80±12% of ATP vs. 49±6% in NTG (P<0.05). Hearts expressing ssTnI also had increased AMPK phosphorylation. The mechanism of ATP preservation was augmented glycolysis. Glycolytic end products (lactate and alanine) were 38% higher in TG-ssTnI than NTG at 2 min and 27% higher at 5 min. This additional glycolysis was supported exclusively by exogenous glucose, and not glycogen. Thus, expression of a fetal myofilament protein in adult mouse hearts induced elevated anaerobic ATP production during ischemia via metabolic adaptations consistent with the resistance to hypoxia of fetal hearts. The general findings hold important relevance to both our current understanding of the association between metabolic and contractile phenotypes and the potential for invoking cardioprotective mechanisms against ischemic stress.
PMCID: PMC3124599  PMID: 21640727
Troponin; Glycolysis; Adenosine Triphosphate (ATP); AMP Activated Protein Kinase, (AMPK); NMR Spectroscopy
24.  Small RNAs for defence and regulation in archaea 
Extremophiles  2012;16(5):685-696.
Non-coding RNAs are key players in many cellular processes within organisms from all three domains of life. The range and diversity of small RNA functions beyond their involvement in translation and RNA processing was first recognized for eukaryotes and bacteria. Since then, small RNAs were also found to be abundant in archaea. Their functions include the regulation of gene expression and the establishment of immunity against invading mobile genetic elements. This review summarizes our current knowledge about small RNAs used for regulation and defence in archaea.
PMCID: PMC3432209  PMID: 22763819
sRNA; Lsm; Hfq; Archaea; CRISPR; crRNA
25.  An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA* 
The Journal of Biological Chemistry  2012;287(40):33351-33363.
Background: CRISPR/Cas systems allow archaea and bacteria to resist invasion by foreign nucleic acids.
Results: The CRISPR/Cas system in Haloferax recognized six different PAM sequences that could trigger a defense response.
Conclusion: The PAM sequence specificity of the defense response in type I CRISPR systems is more relaxed than previously thought.
Significance: The PAM sequence requirements for interference and adaptation appear to differ markedly.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e.g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum.
PMCID: PMC3460438  PMID: 22767603
Archaea; Microbiology; RNA; RNA Metabolism; RNA Processing; CRISPR/Cas; Haloferax volcanii; PAM

Results 1-25 (49)