Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Spatial cue reliability drives frequency tuning in the barn Owl's midbrain 
eLife  null;3:e04854.
The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability.
eLife digest
The ability to locate where a sound is coming from is an essential survival skill for both prey and predator species. A major cue used by the brain to infer the sound's location is the difference in arrival time of the sound at the left and right ears; for example, a sound coming from the left side will reach the left ear before the right ear.
We are exposed to a variety of sounds of different intensities (loud or soft), and pitch (high or low) emitted from many different directions. The cacophony that surrounds us makes it a challenge to detect where individual sounds come from because other sounds from different directions corrupt the signals coming from the target. This background noise can profoundly affect the reliability of the sensory cue.
When sounds reach the ears, the head and external ears transform the sound in a direction-dependent manner so that some pitches are amplified more than other pitches for specific directions. However, the consequence of this filtering is that the directional information about a sound may be altered. For example, if two sounds of a similar pitch but from different locations are heard at the same time, they will add up at the ears and change the directional information. The group of neurons that respond to that range of pitches will be activated by both sounds so they cannot provide reliable information about the direction of the individual sounds. The degree to which the directional information is altered depends on the pitch that is being detected by the neurons; therefore detection of a different pitch within the sound may be a more reliable cue.
Cazettes et al. used the known filtering properties of the owl's head to predict the reliability of the timing cue for sounds coming from different directions in a noisy environment. This analysis showed that for each direction, there was a range of pitches that carried the most reliable cues. The study then focused on whether the neurons that represent hearing space in the owl's brain were sensitive to this range.
The experiments found a remarkable correlation between the pitch preferred by each neuron and the range that carried the most reliable cue for each direction. This finding challenges the common view of sensory neurons as simple processors by showing that they are also selective to high-order properties relating to the reliability of the cue.
Besides selecting the cues that are likely to be the most reliable, the brain must capture changes in the reliability of the sensory cues. In addition, this reliability must be incorporated into the information carried by neurons and used when deciding how best to act in uncertain situations. Future research will be required to unravel how the brain does this.
PMCID: PMC4291741  PMID: 25531067
barn owl; neural coding; cue reliability; sound localization; other
2.  Resolution of interaural time differences in the avian sound localization circuit—a modeling study 
Interaural time differences (ITDs) are a main cue for sound localization and sound segregation. A dominant model to study ITD detection is the sound localization circuitry in the avian auditory brainstem. Neurons in nucleus laminaris (NL) receive auditory information from both ears via the avian cochlear nucleus magnocellularis (NM) and compare the relative timing of these inputs. Timing of these inputs is crucial, as ITDs in the microsecond range must be discriminated and encoded. We modeled ITD sensitivity of single NL neurons based on previously published data and determined the minimum resolvable ITD for neurons in NL. The minimum resolvable ITD is too large to allow for discrimination by single NL neurons of naturally occurring ITDs for very low frequencies. For high frequency NL neurons (>1 kHz) our calculated ITD resolutions fall well within the natural range of ITDs and approach values of below 10 μs. We show that different parts of the ITD tuning function offer different resolution in ITD coding, suggesting that information derived from both parts may be used for downstream processing. A place code may be used for sound location at frequencies above 500 Hz, but our data suggest the slope of the ITD tuning curve ought to be used for ITD discrimination by single NL neurons at the lowest frequencies. Our results provide an important measure of the necessary temporal window of binaural inputs for future studies on the mechanisms and development of neuronal computation of temporally precise information in this important system. In particular, our data establish the temporal precision needed for conduction time regulation along NM axons.
PMCID: PMC4143899  PMID: 25206329
sound localization; interaural time differences; avian brainstem; nucleus laminaris; ITD resolution
3.  Binaural Gain Modulation of Spectrotemporal Tuning in the Interaural Level Difference-Coding Pathway 
The Journal of Neuroscience  2013;33(27):11089-11099.
In the brainstem, the auditory system diverges into two pathways that process different sound localization cues, interaural time differences (ITDs) and level differences (ILDs). We investigated the site where ILD is detected in the auditory system of barn owls, the posterior part of the lateral lemniscus (LLDp). This structure is equivalent to the lateral superior olive in mammals. The LLDp is unique in that it is the first place of binaural convergence in the brainstem where monaural excitatory and inhibitory inputs converge. Using binaurally uncorrelated noise and a generalized linear model, we were able to estimate the spectrotemporal tuning of excitatory and inhibitory inputs to these cells. We show that the response of LLDp neurons is highly locked to the stimulus envelope. Our data demonstrate that spectrotemporally tuned, temporally delayed inhibition enhances the reliability of envelope locking by modulating the gain of LLDp neurons' responses. The dependence of gain modulation on ILD shown here constitutes a means for space-dependent coding of stimulus identity by the initial stages of the auditory pathway.
PMCID: PMC3718367  PMID: 23825414
4.  Forced Desynchrony Reveals Independent Contributions of Suprachiasmatic Oscillators to the Daily Plasma Corticosterone Rhythm in Male Rats 
PLoS ONE  2013;8(7):e68793.
The suprachiasmatic nucleus (SCN) is required for the daily rhythm of plasma glucocorticoids; however, the independent contributions from oscillators within the different subregions of the SCN to the glucocorticoid rhythm remain unclear. Here, we use genetically and neurologically intact, forced desynchronized rats to test the hypothesis that the daily rhythm of the glucocorticoid, corticosterone, is regulated by both light responsive and light-dissociated circadian oscillators in the ventrolateral (vl-) and dorsomedial (dm-) SCN, respectively. We show that when the vlSCN and dmSCN are in maximum phase misalignment, the peak of the plasma corticosterone rhythm is shifted and the amplitude reduced; whereas, the peak of the plasma adrenocorticotropic hormone (ACTH) rhythm is also reduced, the phase is dissociated from that of the corticosterone rhythm. These data support previous studies suggesting an ACTH-independent pathway contributes to the corticosterone rhythm. To determine if either SCN subregion independently regulates corticosterone through the sympathetic nervous system, we compared unilateral adrenalectomized, desynchronized rats that had undergone either transection of the thoracic splanchnic nerve or sham transection to the remaining adrenal. Splanchnicectomy reduced and phase advanced the peak of both the corticosterone and ACTH rhythms. These data suggest that both the vlSCN and dmSCN contribute to the corticosterone rhythm by both reducing plasma ACTH and differentially regulating plasma corticosterone through an ACTH- and sympathetic nervous system-independent pathway.
PMCID: PMC3718825  PMID: 23894346
5.  Neural computation with efficient population codes 
BMC Neuroscience  2013;14(Suppl 1):P129.
PMCID: PMC3704384
6.  Likelihood representation in the owl's sound localization system 
BMC Neuroscience  2013;14(Suppl 1):P128.
PMCID: PMC3704434
7.  Population-wide bias of surround suppression in auditory spatial receptive fields of the owl’s midbrain 
The physical arrangement of receptive fields (RFs) within neural structures is important for local computations. Nonuniform distribution of tuning within populations of neurons can influence emergent tuning properties, causing bias in local processing. This issue was studied in the auditory system of barn owls. The owl’s external nucleus of the inferior colliculus (ICx) contains a map of auditory space where the frontal region is overrepresented. We measured spatiotemporal RFs of ICx neurons using spatial white noise. We found a population-wide bias in surround suppression such that suppression from frontal space was stronger. This asymmetry increased with laterality in spatial tuning. The bias could be explained by a model of lateral inhibition based on the overrepresentation of frontal space observed in ICx. The model predicted trends in surround suppression across ICx that matched the data. Thus, the uneven distribution of spatial tuning within the map could explain the topography of time-dependent tuning properties. This mechanism may have significant implications for the analysis of natural scenes by sensory systems.
PMCID: PMC3447633  PMID: 22855796
Sound localization; spatiotemporal receptive field; inferior colliculus; barn owl; surround bias
8.  Owl's behavior and neural representation predicted by Bayesian inference 
Nature neuroscience  2011;14(8):1061-1066.
PMCID: PMC3145020  PMID: 21725311
9.  Bilateral matching of frequency tuning in neural cross-correlators of the owl 
Biological cybernetics  2009;100(6):521-531.
Sound localization requires comparison between the inputs to the left and right ears. One important aspect of this comparison is the differences in arrival time to each side, also called interaural time difference (ITD).A prevalent model of ITD detection, consisting of delay lines and coincidence-detector neurons, was proposed by Jeffress (J Comp Physiol Psychol 41:35–39, 1948). As an extension of the Jeffress model, the process of detecting and encoding ITD has been compared to an effective cross-correlation between the input signals to the two ears. Because the cochlea performs a spectrotemporal decomposition of the input signal, this cross-correlation takes place over narrow frequency bands. Since the cochlear tonotopy is arranged in series, sounds of different frequencies will trigger neural activity with different temporal delays. Thus, the matching of the frequency tuning of the left and right inputs to the cross-correlator units becomes a ‘timing’ issue. These properties of auditory transduction gave theoretical support to an alternative model of ITD-detection based on a bilateral mismatch in frequency tuning, called the ‘stereausis’ model. Here we first review the current literature on the owl’s nucleus laminaris, the equivalent to the medial superior olive of mammals, which is the site where ITD is detected. Subsequently, we use reverse correlation analysis and stimulation with uncorrelated sounds to extract the effective monaural inputs to the cross-correlator neurons. We show that when the left and right inputs to the cross-correlators are defined in this manner, the computation performed by coincidence-detector neurons satisfies conditions of cross-correlation theory. We also show that the spectra of left and right inputs are matched, which is consistent with predictions made by the classic model put forth by Jeffress.
PMCID: PMC2719282  PMID: 19396457
Barn owl; Interaural time difference; Cross-correlation; Coincidence detection; Cochlear delays; Sound localization; Nucleus laminaris; Stereausis
10.  Multiplicative Auditory Spatial Receptive Fields Created by a Hierarchy of Population Codes 
PLoS ONE  2009;4(11):e8015.
A multiplicative combination of tuning to interaural time difference (ITD) and interaural level difference (ILD) contributes to the generation of spatially selective auditory neurons in the owl's midbrain. Previous analyses of multiplicative responses in the owl have not taken into consideration the frequency-dependence of ITD and ILD cues that occur under natural listening conditions. Here, we present a model for the responses of ITD- and ILD-sensitive neurons in the barn owl's inferior colliculus which satisfies constraints raised by experimental data on frequency convergence, multiplicative interaction of ITD and ILD, and response properties of afferent neurons. We propose that multiplication between ITD- and ILD-dependent signals occurs only within frequency channels and that frequency integration occurs using a linear-threshold mechanism. The model reproduces the experimentally observed nonlinear responses to ITD and ILD in the inferior colliculus, with greater accuracy than previous models. We show that linear-threshold frequency integration allows the system to represent multiple sound sources with natural sound localization cues, whereas multiplicative frequency integration does not. Nonlinear responses in the owl's inferior colliculus can thus be generated using a combination of cellular and network mechanisms, showing that multiple elements of previous theories can be combined in a single system.
PMCID: PMC2776990  PMID: 19956693
11.  Distinct sensory representations of wind and near-field sound in the Drosophila brain 
Nature  2009;458(7235):201-205.
Behavioral responses to wind are thought to play a critical role in controlling the dispersal and population genetics of wild Drosophila species1,2, as well as their navigation in flight3, but their underlying neurobiological basis is unknown. We show that Drosophila melanogaster, like wild-caught Drosophila strains4, exhibits robust wind-induced suppression of locomotion (WISL), in response to air currents delivered at speeds normally encountered in nature1,2. Here we identify wind-sensitive neurons in Johnston’s Organ (JO), an antennal mechanosensory structure previously implicated in near-field sound detection (reviewed in5,6). Using Gal4 lines targeted to different subsets of JO neurons7, and a genetically encoded calcium indicator8, we show that wind and near-field sound (courtship song) activate distinct populations of JO neurons, which project to different regions of the antennal and mechanosensory motor center (AMMC) in the central brain. Selective genetic ablation of wind-sensitive JO neurons in the antenna abolishes WISL behavior, without impairing hearing. Different neuronal subsets within the wind-sensitive population, moreover, respond to different directions of arista deflection caused by airflow and project to different regions of the AMMC, providing a rudimentary map of wind-direction in the brain. Importantly, sound- and wind-sensitive JO neurons exhibit different intrinsic response properties: the former are phasically activated by small, bi-directional, displacements of the aristae, while the latter are tonically activated by unidirectional, static deflections of larger magnitude. These different intrinsic properties are well suited to the detection of oscillatory pulses of near-field sound and laminar airflow, respectively. These data identify wind-sensitive neurons in JO, a structure that has been primarily associated with hearing, and reveal how the brain can distinguish different types of air particle movements, using a common sensory organ.
PMCID: PMC2755041  PMID: 19279637
12.  Cross-Correlation in the Auditory Coincidence Detectors of Owls 
Interaural time difference (ITD) plays a central role in many auditory functions, most importantly in sound localization. The classic model for how ITD is computed was put forth by Jeffress (1948). One of the predictions of the Jeffress model is that the neurons that compute ITD should behave as cross-correlators. Whereas cross-correlation-like properties of the ITD-computing neurons have been reported, attempts to show that the shape of the ITD response function is determined by the spectral tuning of the neuron, a core prediction of cross-correlation, have been unsuccessful. Using reverse correlation analysis, we demonstrate in the barn owl that the relationship between the spectral tuning and the ITD response of the ITD-computing neurons is that predicted by cross-correlation. Moreover, we show that a model of coincidence detector responses derived from responses to binaurally uncorrelated noise is consistent with binaural interaction based on cross-correlation. These results are thus consistent with one of the key tenets of the Jeffress model. Our work sets forth both the methodology to answer whether cross-correlation describes coincidence detector responses and a demonstration that in the barn owl, the result is that expected by theory.
PMCID: PMC2637928  PMID: 18685035
barn owl; interaural time difference; cross-correlation; coincidence detection; sound localization; nucleus laminaris
13.  Emergence of Multiplicative Auditory Responses in the Midbrain of the Barn Owl 
Journal of neurophysiology  2007;98(3):1181-1193.
Space-specific neurons in the barn owl’s auditory space map gain spatial selectivity through tuning to combinations of the interaural time difference (ITD) and interaural level difference (ILD). The combination of ITD and ILD in the subthreshold responses of space-specific neurons in the external nucleus of the inferior colliculus (ICx) is well described by a multiplication of ITD- and ILD-dependent components. It is unknown, however, how ITD and ILD are combined at the site of ITD and ILD convergence in the lateral shell of the central nucleus of the inferior colliculus (ICcl) and therefore whether ICx is the first site in the auditory pathway where multiplicative tuning to ITD-and ILD-dependent signals occurs. We used extracellular re-cording of single neurons to determine how ITD and ILD are combined in ICcl of the anesthetized barn owl (Tyto alba). A comparison of additive, multiplicative, and linear-threshold models of neural responses shows that ITD and ILD are combined nonlinearly in ICcl, but the interaction of ITD and ILD is not uniformly multiplicative over the sample. A subset (61%) of the neural responses is well described by the multiplicative model, indicating that ICcl is the first site where multiplicative tuning to ITD- and ILD-dependent signals occurs. ICx, however, is the first site where multiplicative tuning is observed consistently. A network model shows that a linear combination of ICcl responses to ITD–ILD pairs is sufficient to produce the multiplicative subthreshold responses to ITD and ILD seen in ICx.
PMCID: PMC2532518  PMID: 17615132

Results 1-13 (13)