Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Different polarisome components play distinct roles in Slt2p-regulated cortical ER inheritance in Saccharomyces cerevisiae 
Molecular Biology of the Cell  2013;24(19):3145-3154.
Slt2p kinase activity controls cortical ER inheritance by regulating the association of the ER with the actin-based cytoskeleton. The polarisome complex affects ER inheritance through its effects on Slt2p, with different components playing distinct roles: some are required for Slt2p retention at the bud tip, whereas others affect Slt2p activation.
Ptc1p, a type 2C protein phosphatase, is required for a late step in cortical endoplasmic reticulum (cER) inheritance in Saccharomyces cerevisiae. In ptc1Δ cells, ER tubules migrate from the mother cell and contact the bud tip, yet fail to spread around the bud cortex. This defect results from the failure to inactivate a bud tip–associated pool of the cell wall integrity mitogen-activated protein kinase, Slt2p. Here we report that the polarisome complex affects cER inheritance through its effects on Slt2p, with different components playing distinct roles: Spa2p and Pea2p are required for Slt2p retention at the bud tip, whereas Bni1p, Bud6p, and Sph1p affect the level of Slt2p activation. Depolymerization of actin relieves the ptc1Δ cER inheritance defect, suggesting that in this mutant the ER becomes trapped on the cytoskeleton. Loss of Sec3p also blocks ER inheritance, and, as in ptc1Δ cells, this block is accompanied by activation of Slt2p and is reversed by depolymerization of actin. Our results point to a common mechanism for the regulation of ER inheritance in which Slt2p activity at the bud tip controls the association of the ER with the actin-based cytoskeleton.
PMCID: PMC3784387  PMID: 23924898
2.  Sit4p/PP6 regulates ER-to-Golgi traffic by controlling the dephosphorylation of COPII coat subunits 
Molecular Biology of the Cell  2013;24(17):2727-2738.
Previous studies show that the COPII coat is phosphorylated. The phosphorylated coat, however, cannot rebind to the ER to initiate a new round of vesicle budding. The present study shows that Sit4p/PP6, a Ser/Thr phosphatase, dephosphorylates the COPII coat. Consistent with a role in coat recycling, Sit4p/PP6 regulates ER-to-Golgi traffic.
Traffic from the endoplasmic reticulum (ER) to the Golgi complex is initiated when the activated form of the GTPase Sar1p recruits the Sec23p-Sec24p complex to ER membranes. The Sec23p-Sec24p complex, which forms the inner shell of the COPII coat, sorts cargo into ER-derived vesicles. The coat inner shell recruits the Sec13p-Sec31p complex, leading to coat polymerization and vesicle budding. Recent studies revealed that the Sec23p subunit sequentially interacts with three different binding partners to direct a COPII vesicle to the Golgi. One of these binding partners is the serine/threonine kinase Hrr25p. Hrr25p phosphorylates the COPII coat, driving the membrane-bound pool into the cytosol. The phosphorylated coat cannot rebind to the ER to initiate a new round of vesicle budding unless it is dephosphorylated. Here we screen all known protein phosphatases in yeast to identify one whose loss of function alters the cellular distribution of COPII coat subunits. This screen identifies the PP2A-like phosphatase Sit4p as a regulator of COPII coat dephosphorylation. Hyperphosphorylated coat subunits accumulate in the sit4Δ mutant in vivo. In vitro, Sit4p dephosphorylates COPII coat subunits. Consistent with a role in coat recycling, Sit4p and its mammalian orthologue, PP6, regulate traffic from the ER to the Golgi complex.
PMCID: PMC3756924  PMID: 23864707
3.  Evolutionarily Assembled cis-Regulatory Module at a Human Ciliopathy Locus 
Science (New York, N.Y.)  2012;335(6071):966-969.
Neighboring genes are often coordinately expressed within cis-regulatory modules, but evidence that nonparalogous genes share functions in mammals is lacking. Here, we report that mutation of either TMEM138 or TMEM216 causes a phenotypically indistinguishable human ciliopathy, Joubert syndrome. Despite a lack of sequence homology, the genes are aligned in a head-to-tail configuration and joined by chromosomal rearrangement at the amphibian-to-reptile evolutionary transition. Expression of the two genes is mediated by a conserved regulatory element in the noncoding intergenic region. Coordinated expression is important for their interdependent cellular role in vesicular transport to primary cilia. Hence, during vertebrate evolution of genes involved in ciliogenesis, nonparalogous genes were arranged to a functional gene cluster with shared regulatory elements.
PMCID: PMC3671610  PMID: 22282472
4.  ER network formation requires a balance of the dynamin-like GTPase Sey1p and Lnp1p, a member of the Lunapark family 
Nature Cell Biology  2012;14(7):707-716.
While studies on endoplasmic reticulum (ER) structure and dynamics have focused on the ER tubule forming proteins (reticulons and DP1/Yop1p) and the tubule fusion protein atlastin, nothing is known about the proteins and processes that act to counter-balance this machinery. Here we show that Lnp1p, a member of the conserved lunapark family, plays a role in ER network formation. Lnp1p binds to the reticulons and Yop1p and resides at ER tubule junctions in both yeast and mammalian cells. In the yeast Saccharomyces cerevisiae, the interaction of Lnp1p with the reticulon protein, Rtn1p, and the localization of Lnp1p to ER junctions are regulated by Sey1p, the yeast ortholog of atlastin. We propose that Lnp1p and Sey1p act antagonistically to balance polygonal network formation. In support of this proposal, we show that the collapsed, densely reticulated ER network in lnp1Δ cells is partially restored when the GTPase activity of Sey1p is abrogated.
PMCID: PMC3389217  PMID: 22729086
5.  Trs65p, a subunit of the Ypt1p GEF TRAPPII, interacts with the Arf1p exchange factor Gea2p to facilitate COPI-mediated vesicle traffic 
Molecular Biology of the Cell  2011;22(19):3634-3644.
The TRAPPII-specific subunit Trs65p directly binds to the C-terminus of the Arf1p exchange factor Gea2p. In addition, Gea2p and TRAPPII bind to the yeast orthologue of the γ subunit of the COPI coat complex, a known Arf1p effector. Thus TRAPPII is part of an Arf1p GEF-effector loop that appears to play a role in recruiting or stabilizing TRAPPII to membranes.
The TRAPP complexes are multimeric guanine exchange factors (GEFs) for the Rab GTPase Ypt1p. The three complexes (TRAPPI, TRAPPII, and TRAPPIII) share a core of common subunits required for GEF activity, as well as unique subunits (Trs130p, Trs120p, Trs85p, and Trs65p) that redirect the GEF from the endoplasmic reticulum–Golgi pathway to different cellular locations where TRAPP mediates distinct membrane trafficking events. Roles for three of the four unique TRAPP subunits have been described before; however, the role of the TRAPPII-specific subunit Trs65p has remained elusive. Here we demonstrate that Trs65p directly binds to the C-terminus of the Arf1p exchange factor Gea2p and provide in vivo evidence that this interaction is physiologically relevant. Gea2p and TRAPPII also bind to the yeast orthologue of the γ subunit of the COPI coat complex (Sec21p), a known Arf1p effector. These and previous findings reveal that TRAPPII is part of an Arf1p GEF-effector loop that appears to play a role in recruiting or stabilizing TRAPPII to membranes. In support of this proposal, we show that TRAPPII is more soluble in an arf1Δ mutant.
PMCID: PMC3183018  PMID: 21813735
6.  Sequential interactions with Sec23 control the direction of vesicle traffic 
Nature  2011;473(7346):181-186.
How the directionality of vesicle traffic is achieved remains an important unanswered question in cell biology. The Sec23p/Sec24p coat complex sorts the fusion machinery (SNAREs) into vesicles as they bud from the endoplasmic reticulum. Vesicle tethering to the Golgi begins when the tethering factor TRAPPI binds to Sec23p. Where the coat is released and how this event relates to membrane fusion is unknown. Here we use a yeast transport assay to demonstrate that an ER-derived vesicle retains its coat until it reaches the Golgi. A Golgi-associated kinase, Hrr25p (CK1δ ortholog), then phosphorylates the Sec23p/Sec24p complex. Coat phosphorylation and dephosphorylation are needed for vesicle fusion and budding, respectively. Additionally, we show that Sec23p interacts in a sequential manner with different binding partners, including TRAPPI and Hrr25p, to ensure the directionality of ER-Golgi traffic and prevent the back-fusion of a COPII vesicle with the ER. These events are conserved in mammalian cells.
PMCID: PMC3093450  PMID: 21532587
7.  Establishing a Role for the GTPase Ypt1p at the Late Golgi 
Traffic (Copenhagen, Denmark)  2010;11(4):520-532.
GTPases of the Rab family cycle between an inactive (GDP-bound) and active (GTP-bound) conformation. The active form of the Rab regulates a variety of cellular functions via multiple effectors. Guanine nucleotide exchange factors (GEFs) activate Rabs by accelerating the exchange of GDP for GTP, while GTPase activating proteins (GAPs) inactivate Rabs by stimulating the hydrolysis of GTP. The GTPase Ypt1p is required for ER-Golgi and intra-Golgi traffic in the yeast Saccharomyces cerevisiae. Recent findings, however, have shown that a Ypt1p GEF, GAP and effector are all required for traffic from the early endosome to the Golgi. Here we describe a screen for ypt1 mutants that block traffic from the early endosome to the late Golgi, but not general secretion. This screen has led to the identification of a collection of recessive and dominant mutants that block traffic from the early endosome. While it has long been known that Ypt1p regulates the flow of biosynthetic traffic into the cis side of the Golgi, these findings have established a role for Ypt1p in the regulation of early endosome-Golgi traffic. We propose that Ypt1p regulates the flow of traffic into the cis and trans side of the Golgi via multiple effectors.
PMCID: PMC2861988  PMID: 20059749
Rab; early endosome; Golgi; membrane traffic
8.  Activation of the Mitogen-activated Protein Kinase, Slt2p, at Bud Tips Blocks a Late Stage of Endoplasmic Reticulum Inheritance in Saccharomyces cerevisiae 
Molecular Biology of the Cell  2010;21(10):1772-1782.
We explore the role of components that act both upstream and downstream of Slt2p in the Ptc1p-dependent regulation of ER inheritance and mitochondrial inheritance. Our findings are that Ptc1p is needed to inactivate the pool of Slt2p associated with the bud tip to promote the cortical distribution of the ER in daughter cells.
Inheritance of the endoplasmic reticulum (ER) requires Ptc1p, a type 2C protein phosphatase of Saccharomyces cerevisiae. Genetic analysis indicates that Ptc1p is needed to inactivate the cell wall integrity (CWI) MAP kinase, Slt2p. Here we show that under normal growth conditions, Ptc1p inactivates Slt2p just as ER tubules begin to spread from the bud tip along the cortex. In ptc1Δ cells, the propagation of cortical ER from the bud tip to the periphery of the bud is delayed by hyperactivation of Slt2p. The pool of Slt2p that controls ER inheritance requires the CWI pathway scaffold, Spa2p, for its retention at the bud tip, and a mutation within Slt2p that prevents its association with the bud tip blocks its role in ER inheritance. These results imply that Slt2p inhibits a late step in ER inheritance by phosphorylating a target at the tip of daughter cells. The PI4P5-kinase, Mss4p, is an upstream activator of this pool of Slt2p. Ptc1p-dependant inactivation of Slt2p is also needed for mitochondrial inheritance; however, in this case, the relevant pool of Slt2p is not at the bud tip.
PMCID: PMC2869382  PMID: 20357006
9.  mTrs130 Is a Component of a Mammalian TRAPPII Complex, a Rab1 GEF That Binds to COPI-coated Vesicles 
Molecular Biology of the Cell  2009;20(19):4205-4215.
The GTPase Rab1 regulates endoplasmic reticulum-Golgi and early Golgi traffic. The guanine nucleotide exchange factor (GEF) or factors that activate Rab1 at these stages of the secretory pathway are currently unknown. Trs130p is a subunit of the yeast TRAPPII (transport protein particle II) complex, a multisubunit tethering complex that is a GEF for the Rab1 homologue Ypt1p. Here, we show that mammalian Trs130 (mTrs130) is a component of an analogous TRAPP complex in mammalian cells, and we describe for the first time the role that this complex plays in membrane traffic. mTRAPPII is enriched on COPI (Coat Protein I)-coated vesicles and buds, but not Golgi cisternae, and it specifically activates Rab1. In addition, we find that mTRAPPII binds to γ1COP, a COPI coat adaptor subunit. The depletion of mTrs130 by short hairpin RNA leads to an increase of vesicles in the vicinity of the Golgi and the accumulation of cargo in an early Golgi compartment. We propose that mTRAPPII is a Rab1 GEF that tethers COPI-coated vesicles to early Golgi membranes.
PMCID: PMC2754934  PMID: 19656848
10.  Kinetic Analysis of the Guanine Nucleotide Exchange Activity of TRAPP, a Multimeric Ypt1p Exchange Factor 
Journal of molecular biology  2009;389(2):275-288.
The TRAPP complexes, large multimeric assemblies that function in membrane traffic, are guanine nucleotide exchange factors (GEF) that activate the Rab GTPase Ypt1p. Here we measured the rate and equilibrium constants that define the interaction of Ypt1p with guanine nucleotide (GDP and GTP/GMPPNP) and the core TRAPP subunits required for GEF activity. These parameters allowed us to identify the kinetic and thermodynamic basis by which TRAPP catalyzes nucleotide exchange from Ypt1p. Nucleotide dissociation from Ypt1p is slow (~ 10-4 s-1) and accelerated greater than 1000-fold by TRAPP. Acceleration of nucleotide exchange by TRAPP occurs via a predominantly Mg2+-independent pathway. Thermodynamic linkage analysis indicates that TRAPP weakens the nucleotide affinity by < 80-fold and vice-versa, in contrast to most other characterized GEF systems that weaken nucleotide binding affinities by four to six orders of magnitude. The overall, net changes in nucleotide binding affinities are small because TRAPP accelerates both nucleotide binding and dissociation from Ypt1p. The weak thermodynamic coupling allows TRAPP, Ypt1p and nucleotide to exist as a stable, ternary complex, analogous to strain-sensing cytoskeleton motors. These results illustrate a novel strategy of guanine nucleotide exchange by TRAPP that is particularly suited for a multifunctional GEF involved in membrane traffic.
PMCID: PMC2770256  PMID: 19361519
GTPase; GEF; nucleotide exchange; vesicle trafficking; kinetics
11.  The structural basis for activation of the Rab Ypt1p by the TRAPP membrane tethering complexes 
Cell  2008;133(7):1202-1213.
The multimeric membrane tethering complexes TRAPPI and TRAPPII share seven subunits, of which four (Bet3p, Bet5p, Trs23p, and Trs31p) are minimally needed to activate the Rab GTPase Ypt1p in an event preceding membrane fusion. Here we present the structure of a heteropentameric TRAPPI assembly complexed with Ypt1p. We propose that TRAPPI facilitates nucleotide exchange primarily by stabilizing the nucleotide binding pocket of Ypt1p in an open, solvent-accessible form. Bet3p, Bet5p, and Trs23p interact with Ypt1p directly to stabilize this form, while the C terminus of Bet3p invades the pocket to participate in its remodeling. The Trs31p subunit does not interact directly with the GTPase but allosterically regulates the TRAPPI interface with Ypt1p. Our findings imply that TRAPPII activates Ypt1p by an identical mechanism. This first view of a multimeric membrane tethering assembly complexed with a Rab provides a framework for understanding events preceding membrane fusion at the molecular level.
PMCID: PMC2465810  PMID: 18585354
12.  mBet3p is required for homotypic COPII vesicle tethering in mammalian cells 
The Journal of Cell Biology  2006;174(3):359-368.
TRAPPI is a large complex that mediates the tethering of COPII vesicles to the Golgi (heterotypic tethering) in the yeast Saccharomyces cerevisiae. In mammalian cells, COPII vesicles derived from the transitional endoplasmic reticulum (tER) do not tether directly to the Golgi, instead, they appear to tether to each other (homotypic tethering) to form vesicular tubular clusters (VTCs). We show that mammalian Bet3p (mBet3p), which is the most highly conserved TRAPP subunit, resides on the tER and adjacent VTCs. The inactivation of mBet3p results in the accumulation of cargo in membranes that colocalize with the COPII coat. Furthermore, using an assay that reconstitutes VTC biogenesis in vitro, we demonstrate that mBet3p is required for the tethering and fusion of COPII vesicles to each other. Consistent with the proposal that mBet3p is required for VTC biogenesis, we find that ERGIC-53 (VTC marker) and Golgi architecture are disrupted in siRNA-treated mBet3p-depleted cells. These findings imply that the TRAPPI complex is essential for VTC biogenesis.
PMCID: PMC2064232  PMID: 16880271
13.  Rtn1p Is Involved in Structuring the Cortical Endoplasmic Reticulum 
Molecular Biology of the Cell  2006;17(7):3009-3020.
The endoplasmic reticulum (ER) contains both cisternal and reticular elements in one contiguous structure. We identified rtn1Δ in a systematic screen for yeast mutants with altered ER morphology. The ER in rtn1Δ cells is predominantly cisternal rather than reticular, yet the net surface area of ER is not significantly changed. Rtn1-green fluorescent protein (GFP) associates with the reticular ER at the cell cortex and with the tubules that connect the cortical ER to the nuclear envelope, but not with the nuclear envelope itself. Rtn1p overexpression also results in an altered ER structure. Rtn proteins are found on the ER in a wide range of eukaryotes and are defined by two membrane-spanning domains flanking a conserved hydrophilic loop. Our results suggest that Rtn proteins may direct the formation of reticulated ER. We independently identified Rtn1p in a proteomic screen for proteins associated with the exocyst vesicle tethering complex. The conserved hydophilic loop of Rtn1p binds to the exocyst subunit Sec6p. Overexpression of this loop results in a modest accumulation of secretory vesicles, suggesting impaired exocyst function. The interaction of Rtn1p with the exocyst at the bud tip may trigger the formation of a cortical ER network in yeast buds.
PMCID: PMC1483037  PMID: 16624861
14.  Mutants in trs120 disrupt traffic from the early endosome to the late Golgi 
The Journal of Cell Biology  2005;171(5):823-833.
Transport protein particle (TRAPP), a large complex that mediates membrane traffic, is found in two forms (TRAPPI and -II). Both complexes share seven subunits, whereas three subunits (Trs130p, -120p, and -65p) are specific to TRAPPII. Previous studies have shown that mutations in the TRAPPII-specific gene trs130 block traffic through or from the Golgi. Surprisingly, we report that mutations in trs120 do not block general secretion. Instead, trs120 mutants accumulate aberrant membrane structures that resemble Berkeley bodies and disrupt the traffic of proteins that recycle through the early endosome. Mutants defective in recycling also display a defect in the localization of coat protein I (COPI) subunits, implying that Trs120p may participate in a COPI-dependent trafficking step on the early endosomal pathway. Furthermore, we demonstrate that Trs120p largely colocalizes with the late Golgi marker Sec7p. Our findings imply that Trs120p is required for vesicle traffic from the early endosome to the late Golgi.
PMCID: PMC2171297  PMID: 16314430
15.  Functional specialization within a vesicle tethering complex 
The Journal of Cell Biology  2004;167(5):875-887.
The exocyst is an octameric protein complex required to tether secretory vesicles to exocytic sites and to retain ER tubules at the apical tip of budded cells. Unlike the other five exocyst genes, SEC3, SEC5, and EXO70 are not essential for growth or secretion when either the upstream activator rab, Sec4p, or the downstream SNARE-binding component, Sec1p, are overproduced. Analysis of the suppressed sec3Δ, sec5Δ, and exo70Δ strains demonstrates that the corresponding proteins confer differential effects on vesicle targeting and ER inheritance. Sec3p and Sec5p are more critical than Exo70p for ER inheritance. Although nonessential under these conditions, Sec3p, Sec5p, and Exo70p are still important for tethering, as in their absence the exocyst is only partially assembled. Sec1p overproduction results in increased SNARE complex levels, indicating a role in assembly or stabilization of SNARE complexes. Furthermore, a fraction of Sec1p can be coprecipitated with the exoycst. Our results suggest that Sec1p couples exocyst-mediated vesicle tethering with SNARE-mediated docking and fusion.
PMCID: PMC2172455  PMID: 15583030
16.  Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae 
The Journal of Cell Biology  2003;163(6):1255-1266.
Myo4p is a nonessential type V myosin required for the bud tip localization of ASH1 and IST2 mRNA. These mRNAs associate with Myo4p via the She2p and She3p proteins. She3p is an adaptor protein that links Myo4p to its cargo. She2p binds to ASH1 and IST2 mRNA, while She3p binds to both She2p and Myo4p. Here we show that Myo4p and She3p, but not She2p, are required for the inheritance of cortical ER in the budding yeast Saccharomyces cerevisiae. Consistent with this observation, we find that cortical ER inheritance is independent of mRNA transport. Cortical ER is a dynamic network that forms cytoplasmic tubular connections to the nuclear envelope. ER tubules failed to grow when actin polymerization was blocked with the drug latrunculin A (Lat-A). Additionally, a reduction in the number of cytoplasmic ER tubules was observed in Lat-A–treated and myo4Δ cells. Our results suggest that Myo4p and She3p facilitate the growth and orientation of ER tubules.
PMCID: PMC2173705  PMID: 14691136
cortical ER inheritance; Myo4p; She proteins; myosin; yeast
17.  Sec3p Is Needed for the Spatial Regulation of Secretion and for the Inheritance of the Cortical Endoplasmic ReticulumV⃞ 
Molecular Biology of the Cell  2003;14(12):4770-4782.
Sec3p is a component of the exocyst complex that tethers secretory vesicles to the plasma membrane at exocytic sites in preparation for fusion. Unlike all other exocyst structural genes, SEC3 is not essential for growth. Cells lacking Sec3p grow and secrete surprisingly well at 25°C; however, late markers of secretion, such as the vesicle marker Sec4p and the exocyst subunit Sec8p, localize more diffusely within the bud. Furthermore, sec3Δ cells are strikingly round relative to wild-type cells and are unable to form pointed mating projections in response to α factor. These phenotypes support the proposed role of Sec3p as a spatial landmark for secretion. We also find that cells lacking Sec3p exhibit a dramatic defect in the inheritance of cortical ER into the bud, whereas the inheritance of mitochondria and Golgi is unaffected. Overexpression of Sec3p results in a prominent patch of the endoplasmic reticulum (ER) marker Sec61p-GFP at the bud tip. Cortical ER inheritance in yeast has been suggested to involve the capture of ER tubules at the bud tip. Sec3p may act in this process as a spatial landmark for cortical ER inheritance.
PMCID: PMC284782  PMID: 12960429
18.  A Ypt32p Exchange Factor Is a Putative Effector of Ypt1p 
Molecular Biology of the Cell  2002;13(9):3336-3343.
Ypt1p regulates vesicle tethering and fusion events from the ER to the Golgi and through the early Golgi. Genetic studies have suggested a functional relationship between Ypt1p and Ypt31p/Ypt32p. Ypt31p and Ypt32p are a pair of functionally redundant GTPases that act after Ypt1p to mediate intra-Golgi traffic or the budding of post-Golgi vesicles from the trans-Golgi. Here we report that a novel Ypt32p exchange factor is a putative effector of Ypt1p. These findings implicate small GTP-binding proteins of the Ypt/Rab family in a signal cascade that directs membrane traffic through the secretory pathway.
PMCID: PMC124163  PMID: 12221137
19.  Trapp Stimulates Guanine Nucleotide Exchange on Ypt1p 
The Journal of Cell Biology  2000;151(2):289-296.
TRAPP, a novel complex that resides on early Golgi, mediates the targeting of ER-to-Golgi vesicles to the Golgi apparatus. Previous studies have shown that YPT1, which encodes the small GTP-binding protein that regulates membrane traffic at this stage of the secretory pathway, interacts genetically with BET3 and BET5. Bet3p and Bet5p are 2 of the 10 identified subunits of TRAPP. Here we show that TRAPP preferentially binds to the nucleotide-free form of Ypt1p. Mutants with defects in several TRAPP subunits are temperature-sensitive in their ability to displace GDP from Ypt1p. Furthermore, the purified TRAPP complex accelerates nucleotide exchange on Ypt1p. Our findings imply that Ypt1p, which is present on ER-to-Golgi transport vesicles, is activated at the Golgi once it interacts with TRAPP.
PMCID: PMC2192651  PMID: 11038176
exchange factor; small GTPase; secretion; ER-to-Golgi; tethering factor
20.  Aux1p/Swa2p Is Required for Cortical Endoplasmic Reticulum Inheritance in Saccharomyces cerevisiae 
Molecular Biology of the Cell  2001;12(9):2614-2628.
In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum (ER) is found at the periphery of the cell and around the nucleus. The segregation of ER through the mother-bud neck may occur by more than one mechanism because perinuclear, but not peripheral ER, requires microtubules for this event. To identify genes whose products are required for cortical ER inheritance, we have used a Tn3-based transposon library to mutagenize cells expressing a green fluorescent protein-tagged ER marker protein (Hmg1p). This approach has revealed that AUX1/SWA2 plays a role in ER inheritance. The COOH terminus of Aux1p/Swa2p contains a J-domain that is highly related to the J-domain of auxilin, which stimulates the uncoating of clathrin-coated vesicles. Deletion of the J-domain of Aux1p/Swa2p leads to vacuole fragmentation and membrane accumulation but does not affect the migration of peripheral ER into daughter cells. These findings suggest that Aux1p/Swa2p may be a bifunctional protein with roles in membrane traffic and cortical ER inheritance. In support of this hypothesis, we find that Aux1p/Swa2p localizes to ER membranes.
PMCID: PMC59699  PMID: 11553703
21.  High-Copy Suppressor Analysis Reveals a Physical Interaction between Sec34p and Sec35p, a Protein Implicated in Vesicle Docking 
Molecular Biology of the Cell  1999;10(10):3317-3329.
A temperature-sensitive mutant, sec34-2, is defective in the late stages of endoplasmic reticulum (ER)-to-Golgi transport. A high-copy suppressor screen that uses the sec34-2 mutant has resulted in the identification of the SEC34 structural gene and a novel gene called GRP1. GRP1 encodes a previously unidentified hydrophilic yeast protein related to the mammalian Golgi protein golgin-160. Although GRP1 is not essential for growth, the grp1Δ mutation displays synthetic lethal interactions with several mutations that result in ER accumulation and a block in the late stages of ER-to-Golgi transport, but not with those that block the budding of vesicles from the ER. Our findings suggest that Grp1p may facilitate membrane traffic indirectly, possibly by maintaining Golgi function. In an effort to identify genes whose products physically interact with Sec34p, we also tested the ability of overexpressed SEC34 to suppress known secretory mutations that block vesicular traffic between the ER and the Golgi. This screen revealed that SEC34 specifically suppresses sec35-1. SEC34 encodes a hydrophilic protein of ∼100 kDa. Like Sec35p, which has been implicated in the tethering of ER-derived vesicles to the Golgi, Sec34p is predominantly soluble. Sec34p and Sec35p stably associate with each other to form a multiprotein complex of ∼480 kDa. These data indicate that Sec34p acts in conjunction with Sec35p to mediate a common step in vesicular traffic.
PMCID: PMC25597  PMID: 10512869

Results 1-21 (21)