PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Chemotopic Representations of Aromatic Odorants in the Rat Olfactory Bulb 
Our laboratory has characterized spatial patterns of evoked neural activity across the entire glomerular layer of the rat olfactory bulb using primarily aliphatic odorants that differ systematically in functional groups and hydrocarbon structures. To represent more fully the true range of odorant chemistry, we have investigated aromatic compounds, which have a more rigid molecular structure than most aliphatic compounds and are particularly salient olfactory stimuli for humans. We first investigated glomerular patterns of 2-deoxyglucose uptake in response to aromatic compounds that differ in the nature and position of their functional groups (e.g., xylenes, trimethylbenzenes, tolualdehydes, benzaldehydes, methyl toluates, and anisaldehydes). We also studied the effects of systematic increases in the number and length of alkyl substituents. We found that most aromatic compounds activated glomeruli in the dorsal part of the bulb. Within this general area, aromatic odorants with oxygen-containing substituents favored activation of more rostral regions, and aromatic hydrocarbons activated more posterior regions. The nature of substituents greatly affected the pattern of glomerular activation, whereas isomers differing in substitution position evoked very similar overall patterns. These relationships between the structure of aromatic compounds and their spatial representation in the bulb are contrasted with our previous findings with aliphatic odorants.
doi:10.1002/cne.20982
PMCID: PMC2224900  PMID: 16736464
2-deoxyglucose; odors; imaging techniques
2.  Interactions Between Odorant Functional Group and Hydrocarbon Structure Influence Activity in Glomerular Response Modules in the Rat Olfactory Bulb 
To investigate the effect of odorant hydrocarbon structure on spatial representations in the olfactory bulb systematically, we exposed rats to odorant chemicals possessing one of four different oxygen-containing functional groups on one of five different hydrocarbon backbones. We also used several hydrocarbon odorants lacking other functional groups. Hydrocarbon structural categories included straight-chained, branched, double-bonded, alicyclic, and aromatic features. Activity throughout the entire glomerular layer was measured as uptake of [14C]2-deoxyglucose and was mapped into anatomically standardized data matrices for statistical comparisons across different animals. Patterns evoked by straight-chained aliphatic odorants confirmed an association of activity in particular glomerular response modules with particular functional groups. However, the amount of activity in these same modules also was affected significantly by differences in hydrocarbon structure. Thus, the molecular features recognized by receptors projecting to these response modules appear to involve both functional group and hydrocarbon structural elements. In addition, particular benzyl and cyclohexyl odorants evoked activity in dorsal modules previously associated with the ketone functional group, which represents an exception to the rule of one feature per response module that had emerged from our previous studies. These dorsal modules also responded to nitrogen-containing aromatic compounds involving pyridine and pyrazine rings. The unexpected overlap in modular responses to ketones and odorants seemingly unrelated to ketones may reflect some covert shared molecular feature, the existence of odorant sensory neurons with multiple specificities, or a mosaic of sensory neuron projections to these particular modules.
doi:10.1002/cne.20409
PMCID: PMC2222893  PMID: 15678471
deoxyglucose; odors; imaging techniques
3.  Effects of Functional Group Position on Spatial Representations of Aliphatic Odorants in the Rat Olfactory Bulb 
Principles of olfactory coding can be clarified by studying the olfactory bulb activity patterns that are evoked by odorants differing systematically in chemical structure. In the present study, we used series of aliphatic esters, ketones, and alcohols (27 odorants total) to determine the effects of functional group position on glomerular-layer activity patterns. These patterns were measured as uptake of [14C]2-deoxyglucose and were mapped into standardized data matrices for statistical comparison across different rats. The magnitude of the effect of position differed greatly for the different functional groups. For ketones, there was little or no effect of position on evoked patterns. For esters, uptake in individual glomerular modules increased, while uptake in others decreased with changing group position, and yet the overall patterns remained similar. For alcohols, group position had a profound effect on evoked activity patterns. For example, moving the hydroxyl group in either heptanol or nonanol from the first to the fourth carbon changed the activity patterns so greatly that the major areas of response did not overlap. Within every functional group series, however, responses were globally chemotopic, such that pairs of odorants with the smallest difference in functional group position evoked the most similar patterns. These results help to define further the specificities of glomeruli within previously described glomerular modules, and they show that functional group position can be an important feature in encoding an odorant molecule.
doi:10.1002/cne.20415
PMCID: PMC2222918  PMID: 15678475
deoxyglucose; olfactory bulb; odors; imaging techniques
4.  Detection of Large Interaural Delays and Its Implication for Models of Binaural Interaction  
The interaural time difference (ITD) is a major cue to sound localization along the horizontal plane. The maximum natural ITD occurs when a sound source is positioned opposite to one ear. We examined the ability of owls and humans to detect large ITDs in sounds presented through headphones. Stimuli consisted of either broad or narrow bands of Gaussian noise, 100 ms in duration. Using headphones allowed presentation of ITDs that are greater than the maximum natural ITD. Owls were able to discriminate a sound leading to the left ear from one leading to the right ear, for ITDs that are 5 times the maximum natural delay. Neural recordings from optic-tectum neurons, however, show that best ITDs are usually well within the natural range and are never as large as ITDs that are behaviorally discriminable. A model of binaural cross-correlation with short delay lines is shown to explain behavioral detection of large ITDs. The model uses curved trajectories of a cross-correlation pattern as the basis for detection. These trajectories represent side peaks of neural ITD-tuning curves and successfully predict localization reversals by both owls and human subjects.
doi:10.1007/s101620020006
PMCID: PMC3202365  PMID: 12083726
interaural; binaural; owl; ITD

Results 1-4 (4)