PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Complete Genome Sequence of Serratia liquefaciens Strain ATCC 27592 
Genome Announcements  2013;1(4):e00548-13.
We report the complete genome sequence of Serratia liquefaciens strain ATCC 27592, which was previously identified as capable of growth under low-pressure conditions. To the best of our knowledge, this is the first announcement of the complete genome sequence of an S. liquefaciens strain.
doi:10.1128/genomeA.00548-13
PMCID: PMC3744671  PMID: 23950115
2.  Exploring the Low-Pressure Growth Limit: Evolution of Bacillus subtilis in the Laboratory to Enhanced Growth at 5 Kilopascals ▿  
Applied and Environmental Microbiology  2010;76(22):7559-7565.
Growth of Bacillus subtilis cells, normally adapted at Earth-normal atmospheric pressure (∼101.3 kPa), was progressively inhibited by lowering of pressure in liquid LB medium until growth essentially ceased at 2.5 kPa. Growth inhibition was immediately reversible upon return to 101.3 kPa, albeit at a slower rate. A population of B. subtilis cells was cultivated at the near-inhibitory pressure of 5 kPa for 1,000 generations, where a stepwise increase in growth was observed, as measured by the turbidity of 24-h cultures. An isolate from the 1,000-generation population was obtained that showed an increase in fitness at 5 kPa when compared to the ancestral strain or a strain obtained from a parallel population that evolved for 1,000 generations at 101.3 kPa. The results from this preliminary study have implications for understanding the ability of terrestrial microbes to grow in low-pressure environments such as Mars.
doi:10.1128/AEM.01126-10
PMCID: PMC2976213  PMID: 20889789
3.  Persistence of Biomarker ATP and ATP-Generating Capability in Bacterial Cells and Spores Contaminating Spacecraft Materials under Earth Conditions and in a Simulated Martian Environment▿  
Applied and Environmental Microbiology  2008;74(16):5159-5167.
Most planetary protection research has concentrated on characterizing viable bioloads on spacecraft surfaces, developing techniques for bioload reduction prior to launch, and studying the effects of simulated martian environments on microbial survival. Little research has examined the persistence of biogenic signature molecules on spacecraft materials under simulated martian surface conditions. This study examined how endogenous adenosine-5′-triphosphate (ATP) would persist on aluminum coupons under simulated martian conditions of 7.1 mbar, full-spectrum simulated martian radiation calibrated to 4 W m−2 of UV-C (200 to 280 nm), −10°C, and a Mars gas mix of CO2 (95.54%), N2 (2.7%), Ar (1.6%), O2 (0.13%), and H2O (0.03%). Cell or spore viabilities of Acinetobacter radioresistens, Bacillus pumilus, and B. subtilis were measured in minutes to hours, while high levels of endogenous ATP were recovered after exposures of up to 21 days. The dominant factor responsible for temporal reductions in viability and loss of ATP was the simulated Mars surface radiation; low pressure, low temperature, and the Mars gas composition exhibited only slight effects. The normal burst of endogenous ATP detected during spore germination in B. pumilus and B. subtilis was reduced by 1 or 2 orders of magnitude following, respectively, 8- or 30-min exposures to simulated martian conditions. The results support the conclusion that endogenous ATP will persist for time periods that are likely to extend beyond the nominal lengths of most surface missions on Mars, and planetary protection protocols prior to launch may require additional rigor to further reduce the presence and abundance of biosignature molecules on spacecraft surfaces.
doi:10.1128/AEM.00891-08
PMCID: PMC2519281  PMID: 18567687
4.  Bacillus Endospores Isolated from Granite: Close Molecular Relationships to Globally Distributed Bacillus spp. from Endolithic and Extreme Environments 
As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ∼500 cultivable Bacillus spores and ∼104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted.
doi:10.1128/AEM.72.4.2856-2863.2006
PMCID: PMC1449054  PMID: 16597992
5.  The TRAP-Like SplA Protein Is a trans-Acting Negative Regulator of Spore Photoproduct Lyase Synthesis during Bacillus subtilis Sporulation 
Journal of Bacteriology  2000;182(2):555-560.
UV resistance of bacterial endospores derives from a unique DNA photochemistry in which the major UV photoproduct is the thymine dimer 5-thyminyl-5,6-dihydrothymine (spore photoproduct [SP]) instead of cyclobutane pyrimidine dimers. Repair of SP during spore germination is due in large part to the activity of the enzyme SP lyase encoded by splB, the second cistron of the splAB operon. Expression of the splAB operon in Bacillus subtilis is transcriptionally activated by the EςG form of RNA polymerase during morphological stage III in the developing forespore compartment, and SP lyase is packaged into the dormant spore. In addition to temporal and compartmental control of splAB expression, a second regulatory circuit which modulates the level of expression of splB-lacZ fusions without altering their developmental timing or compartmentalization is reported here. This second regulatory circuit involves the negative action of the splA gene product, a 79-amino-acid protein with approximately 50% similarity and 17% identity to TRAP, the tryptophan RNA-binding attenuation protein from B. subtilis and Bacillus pumilus.
PMCID: PMC94315  PMID: 10629212

Results 1-5 (5)