PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  SO2 protects the amino nitrogen metabolism of Saccharomyces cerevisiae under thermal stress 
Microbial biotechnology  2012;5(5):654-662.
Summary
Thermal stress conditions during alcoholic fermentation modify yeasts' plasma membrane since they become more hyperfluid, which results in a loss of bilayer integrity. In this study, the influence of elevated temperatures on nitrogen metabolism of a Saccharomyces cerevisiae strain was studied, as well as the effect of different concentrations of SO2 on nitrogen metabolism under thermal stress conditions. The results obtained revealed that amino nitrogen consumption was lower in the fermentation sample subjected to thermal stress than in the control, and differences in amino acid consumption preferences were also detected, especially at the beginning of the fermentation. Under thermal stress conditions, among the three doses of SO2 studied (0, 35, 70 mg l−1 SO2), the highest dose was observed to favour amino acid utilization during the fermentative process, whereas sugar consumption presented higher rates at medium doses.
doi:10.1111/j.1751-7915.2012.00343.x
PMCID: PMC3815877  PMID: 22452834
2.  The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars 
Sensors (Basel, Switzerland)  2010;10(10):9211-9231.
We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.
doi:10.3390/s101009211
PMCID: PMC3230958  PMID: 22163405
IR ground temperature sensor; sensor thermal model; spacecraft instrumentation; in-flight calibration

Results 1-2 (2)